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Industrial control systems (ICSs) are critical infrastructures that remain highly vulnerable to both accidental and
intentional anomalies, potentially leading to dangerous scenarios. While machine learning (ML) models are
increasingly used for anomaly detection in ICSs, concerns about their trustworthiness persist due to their "black-
box" nature, lack of effective uncertainty treatment, and absence of prediction guarantees. A key challenge is the
high rate of false alarms, which can overwhelm operators and lead to unnecessary shutdowns. To address this, we
propose a novel approach integrating deep autoencoders with conformal predictions to achieve high anomaly
detection performance while providing statistical guarantees on false alarm rates. Our method uses conformal
prediction as a post-hoc technique to enhance uncertainty treatment in a CNN-LSTM autoencoder, yielding
trustworthy anomaly detection results with guaranteed false alarm rates. Recognizing temporal distribution shifts
in time-series data, we incorporate temporal quantile adjustment to dynamically adapt the anomaly detection
threshold, further improving temporal false alarm rate guarantees empirically. We validate the proposed model's
ability to detect both accidental and attack-induced anomalies while maintaining a controlled false alarm rate
using a publicly available dataset.
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1. Introduction Convolutional ~ Neural = Networks (CNNs)
(Kravchik et al, 2018), Long Short-Term
Memory (LSTM) networks (Perales et al., 2020),
Generative Adversarial Networks (GANSs) (Li et
al., 2019), Graph Neural Networks (GNN) (Wu
et al., 2021), Transformers (Shang et al., 2024),
and autoencoders (Zhang et al., 2021), as well as
hybrid approaches combining multiple models.
With the advancement of DL, it is increasingly
implemented for anomaly detection for ICSs due
to its accuracy and capability to accommodate
multivariate time-series data. Typically, DL-
based anomaly detectors identify outliers based
on the prediction errors, reconstruction errors of
ML models, or a combination of both metrics.

With the increasing automation and digitization
of industrial control systems (ICSs), safety and
security issues remain a significant concern due
to the potential for catastrophic consequences
(Yuan et al., 2024). Anomaly detection plays a
pivotal role in ensuring the safety and security of
ICSs by identifying anomalies/outliers caused by
either critical safety faults or malicious attacks.
Consequently, various machine learning (ML)
algorithms and models have been developed and
applied to anomaly detection in ICSs, which are
often characterized by operating multivariate
time-series data.

Various ML and deep learning (DL) models -
have been applied for anomaly detection in an ~ /Among those DL models, autoencoder and its
unsupervised manner, including Support Vector ~ variants have been prevalent due to its high
Machines (SVMs) (Anton et al.,, 2019), Random ~ accuracy —and  capability to handle high-
Forests (RF) (Alhaidari and Ezaz, 2019),
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dimensional data and flexibility to integrate with
other techniques.

However, concerns regarding the trustworthiness
of ML-based anomaly detectors persist,
primarily due to the black-box nature of ML
models and the lack of guaranteed reliability in
their results. A particularly pressing issue is the
high incidence of false alarms (false positives)
generated by anomaly detectors, which not only
undermines their trustworthiness but also
overwhelms operators in practical settings (Yang
etal., 2024).

To address these challenges, ongoing
advancements in uncertainty quantification (UQ)
for ML models show promise in enhancing their
suitability for ICS anomaly detection. UQ
techniques can account for both epistemic and
aleatory uncertainties in ML models, providing
insights into prediction confidence and thereby
improving trustworthiness. State-of-the-art UQ
approaches include Bayesian neural networks,
Gaussian process regression, Monte Carlo
dropout, ensemble techniques, and hybrid
methods (Nemani et al., 2023).

More recently, conformal prediction has gained
significant attention in this domain due to its
unique advantages. It provides statistical
guarantees,  distribution-free  validity, and
compatibility with various ML models in a wrap-
up manner, all while maintaining computational
efficiency (Angelopoulos & Bates, 2021). Given
the demands for real-time anomaly detection, the
ability to handle high-dimensional data, and the
need to guarantee false alarm rates, the
conformal prediction framework offers distinct
benefits, making it a strong candidate for ICS
applications.

To this end, this study integrates deep learning,
specifically a deep autoencoder, with the
conformal prediction framework to achieve
trustworthy  anomaly  detection in ICS
applications while ensuring guaranteed false
alarm rates. The proposed model is designed to
deliver reliable anomaly detection, enabling
effective emergency responses to critical safety
faults, failures, or malicious attacks. A publicly
available ICS anomaly dataset is utilized to
validate the performance of the conformal deep
autoencoder in terms of its accuracy and false
alarm rate guarantees.

2. Preliminaries

Preliminaries on deep autoencoders and
conformal predictions are given below.

2.1. Autoencoders for anomaly detection

An autoencoder is a type of artificial neural
network (ANN) designed to learn -efficient
representations of data, wusually in an
unsupervised manner (Kumar et al., 2024). It
consists of two main components: encoder and
decoder, which aim to compresses input data
into a lower-dimensional latent representation
and reconstruct the original input data from the
latent representation, respectively.

In anomaly detection applications, autoencoder
is trained on representative normal data to
minimize the reconstruction error, which
measures the difference between the original
input and its reconstruction. When an anomaly
instance is input into the autoencoder, the model
struggles to reconstruct it accurately, leading to a
higher reconstruction error. By thresholding
reconstruction error properly, anomalies can be
detected because anomalous data samples tend to
have high reconstruction errors.

2.2. Conformal predictions

Conformal prediction (CP) is a user-friendly
paradigm that provides statistically rigorous
uncertainty quantification (Vovk et al., 2005).
Conformal prediction works by calibrating
model outputs to meet a desired confidence level.
A key advantage of CP is its distribution-free
validity, relying only on the assumption of data
exchangeability. Combined with its post-hoc
nature, CP is compatible with any machine
learning model, making it particularly appealing
for integration into complex deep learning
systems (Angelopoulos & Bates, 2021).

CP methods can be categorized into full
conformal  prediction and  split/inductive
conformal  prediction.  Split/inductive =~ CP
significantly reduces computational costs while
maintaining  statistical validity, making it
increasingly popular in practical applications. In
this study, CP refers to split conformal
prediction by default.

In the context of anomaly detection, CP
demonstrates significant potential, especially due
to its effectiveness in out-of-distribution
detection. By offering statistical guarantees, CP
enhances the trustworthiness of anomaly
detection models and helps address the issue of
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false positives — a common challenge in ICS
anomaly detection.

3. Methodology
3.1. CNN-LSTM autoencoder

Multivariate time-series data poses significant
challenges for anomaly detection in ICS
applications due to the difficulty of capturing
complex spatial and temporal features. To
address this, a CNN-LSTM autoencoder is
employed. The CNN layers extract spatial
correlations and dependencies within the
multivariate data, while the LSTM layers capture
temporal dynamics from the CNN outputs. This
combination allows the model to effectively
process the complex spatial-temporal features
inherent in multivariate time-series data. Details
of the CNN-LSTM autoencoder architecture are
provided in Section 4.2.

3.2. Conformal anomaly detection

The use of conformal predictions for ML-based
anomaly detection typically involves three steps:
first, training a machine learning model on a
training dataset; second, using a separate
calibration dataset to compute nonconformity
scores that quantify how unusual each data
sample is; and finally, setting a nonconformity
score threshold based on the calibration dataset
with the desired confidence level and detecting
anomalies in new data instances by comparing
their nonconformity scores to this threshold.

In this study, the reconstruction error (mean
squared error, MSE) of the autoencoder is used
as the nonconformity score.

JCORED N CHEE ) BN
where nonconformity score s(X;) is the MSE for
data sample X; . To achieve false positive
guarantees, we make sure false positive rate less

than a significance level a (e.g., a = 0.05)
(Angelopoulos & Bates, 2021).

P(C(Xipiier) = outlier) < a 2)
where C is the function used to detect
outliers/anomalies, and X, represents any
new data instance from the normal dataset. To
define the function C , the quantile of
nonconformity scores from the calibration set is
queried.

[(n+1)(1—a)]) 3)

q = quantile (51, ey Sy -
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_ (inlier ifs(X)<q
cx) = {outlier if s(X)>qg )
where s; to s, represent the nonconformity

scores of the data instances in the calibration set,
and n is the size of the calibration set. § denotes
the queried quantile of the nonconformity scores,
and s(X) is the nonconformity score of a new
data instance, X.

Additionally, P-value in the context of conformal
prediction, indicating the proportion of
calibration scores greater than or equal to a test
sample’s score, can also be leveraged to detect
anomalies and is equivalent to method above.
For a given test instance X, the p-value (p(X)) is
calculated as:

Y Usizs(X))

p(0) s ©
_ (inlier if p(x) 2 a
) = {outlier if p(X)<a (©)

where 1{s; = s(X)} is an indicator function that
equals 1 if' s; = s(X) and 0 otherwise.

3.3. Temporal quantile adjustment

Data  exchangeability is a fundamental
assumption in conformal predictions. Given
time-series data, this assumption can hardly be
met, leading to the loss of longitudinal/temporal
coverage due to potential distribution shifts. As a
result, this study implements a temporal quantile
adjustment approach (TQA-B) proposed by Lin
et al. (2022) to improve the temporal coverage
empirically. The core idea of TQA-B is to adjust
the quantile using &, such that d =a -4, to
ensure the desired significance level is achieved.
8 is regarded as the prediction of & and
determined by a mapping function: 85, «
g(Fs ). 7, is supposed to predict r,, which is
the rank of nonconformity scores in the
calibration set at time ¢.
s,

Et = Zi'=1 t (7)
7o = Q' (es {8 ®

where €, represents the exponentially weighted
nonconformity score at time t. [ is a decay
factor, set to 0.8 in this study. s, denotes the
nonconformity score at time t'. 7, is the quantile
of € in the set of weighted nonconformity scores,
{&3}. Q7! is the inverse quantile function, which
outputs the quantile of € in {€}. Then, the
adjusted quantile, 8., is calculated below.
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A Q- (F-(1-w) ift<l-a
841 = 9
o {?t—(l—a) iff21-a &)
0 = —Caleal+D) (10)

[1-al-(A-2a)+1+|al)

Where Q is a constant, and @ = o — 8 is used to
query the quantile in Eq. (3), instead of using «.
Since @ tends to approach 0, lead to overly
conservative guarantees on the false alarm rate,
bounding away @ from O has been shown to
empirically  improve  anomaly  detection
performance. To achieve this, § = 18 can be
implemented (Lin et al., 2022). For instance, if
we restrict @ = 0.02, we have:

@=a—218=0.02 (11)

Considering Eq. (9) and (11), and given o =
0.05, we then have 1 = 222 = 0.6.

a

To maintain a stable calibration set size, a sliding
time window mechanism is employed. Since the
calibration set is ideally intended to contain only
in-distribution (normal) data, selection criteria
are established to exclude obviously anomalous
data, while ensuring the inclusion of in-
distribution data.

T = quantile(Speiar; V) * (1 + 1)

{Stﬂ =S8:(s2,...,5) Us(X) s(X)<T
Str1 =S¢ s(X)=T

(12)
(13)

Here, T represents the threshold for the
nonconformity score. This threshold depends on
quantile ¥ of the nonconformity scores from the
initial calibration set ( Siuq ) and an inflation
factor, u. This operation helps to achieve a better
false positive rate guarantee by ensuring the
inclusion of in-distribution data, capturing
distribution-shift features, and allowing for the
inclusion of slightly anomalous data, which may
raise the anomaly detection threshold slightly. In
this study, y is set to 1 and p is configured to
0.01 to ensure that in-distribution data from the
test set is incorporated. When the nonconformity
score of a new test instance, s(X), falls below the
threshold T , calibration set’s nonconformity
score set slides by incorporating the new test
instance and removing the oldest one in the set.
Otherwise, the nonconformity score set remains
unchanged, as shown in Eq. (13).

3.4. Evaluation metrics

To evaluate the performance of the conformal
deep autoencoder in detecting anomalies and

guaranteeing false positives, widely-used metrics
for binary classification are used, including
Precision, Recall, F1-Score, and AUROC (Area
Under the Receiver Operating Characteristic
Curve).

Precision = (14)
TP+FP
TP
Recall = TPEEN (15)
Fl=2- Preci_lsif)n-Recall (16)
Precision+Recall

where TP represents true positives, which are
correctly identified anomalies, FP denotes false
positives, which are normal instances
misclassified as anomalies, and FN refers to false
negatives, which are anomalies misclassified as
normal.

The AUROC evaluates the performance of the
anomaly detector by capturing the trade-off
between the True Positive Rate (Recall) and the
False Positive Rate (FPR), the latter also known
as the false alarm rate. An AUROC value of 1
signifies perfect discrimination, while a value of
0.5 indicates random guessing. False Positive
Rate is calculated below.

FPR = —

FP+TN (17)

where TN represents true negatives, referring to
normal instances correctly classified as normal.

4. Computational experiment and results

4.1. Dataset descriptions

We use a publicly available ICS dataset (Laso et
al., 2017) for our numerical experiments. This
dataset is well-suited for evaluating anomaly
detection performance, as it encompasses a
diverse range of anomalous patterns across 14
scenarios, including physical sabotage, system
failures, and cyberattacks, in addition to normal
operating conditions.

Given the multivariate time-series data, a time
step of 0.05 seconds is implemented to sample
the data. All 10 features, for both normal and
anomalous conditions, are normalized to the
range [0, 1]. To capture the inherent temporal
dependencies, a sliding window of 50 time steps
is employed, continuously generating data
sequence samples.

Using unsupervised learning, the model is
trained exclusively on normal data with a
training set, taking 60% of the normal data. A
calibration set taking 30% of the normal data is
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used to derive nonconformity scores and for
conformal predictions. The test set, which
includes the rest of the normal data and
anomalous data, is employed to evaluate the
model’s performance. Details on the sizes of the
training set, calibration set, and test set are
provided in Table 1.

Table 1. Details on the split of the data sets.

Names of data Data Numbers of
sets categories data samples
Training set normal 81,660
Calibration set normal 40,830
Test set normal 13,611
anomalous 6,453
4.2. Model training
A CNN-LSTM  autoencoder, with the

architecture shown in Fig. 1, is trained using the
training set. This architecture captures both
spatial and temporal features of the time-series
data. The Mean Squared Error (MSE) is used as
the loss function to minimize reconstruction
errors, while the Adam optimizer is used for
model training. Hyperparameters, including
learning rate, batch size, and the number of
epochs, are tuned to optimize the model’s
performance.  The  trained = CNN-LSTM
autoencoder then serves as the basis for
conformal anomaly detection. Reconstruction
errors generated by the autoencoder are used as
nonconformity scores. A significance level, a =
0.05, is applied, and a sliding calibration set is
implemented to dynamically determine the
anomaly detection threshold, according to the
methods detailed in Sections 3.2 and 3.3.

Input Output (ConviDTranspose)
(Shape: window_size, (fiters=feature_count
feature_count) Kernel Size=3, Sigmoid)
. |
ConviD Dropout
(fiters=64, Kernel Size=3) (Rate=03)

Activation (ReLU)

Dropout ConviDTranspose
(Rate=0.3) (fiters=64, Kemel Size=3)

|

ConviD Dropout
(fiters=32, Kemel Size=3) (Rate=0.3)

Activation (ReLU)

!

Activation (ReLU)

Dropout ConviDTranspose
(Rate=0.3) (fiters=32, Kemel Size=3)
LsTM )] Latent Space ) LsTM
(units=32) (LSTM, units=16) (units=32)
Encoder Decoder

Fig. 1. Structure of the CNN-LSTM autoencoder.
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4.3. Results and analysis

To evaluate the proposed approach from two
perspectives — its  anomaly  detection
performance and its ability to guarantee desired
false alarm rates — we compared it against
several baseline methods. These include
Principal Component Analysis (PCA) with
Hotelling's T*> and Q-statistics for anomaly
detection, k-Nearest Neighbors (k-NN), One-
Class Support Vector Machine (OC-SVM),
Isolation Forest, and a hybrid CNN-LSTM
model. To ensure a fair comparison, all methods
were trained and tested on the same datasets.
Additional details on the baseline methods are
provided below.

In the PCA-based approach, the anomaly
detection indices — Hotelling’s T > and Q-
statistics (or Squared Prediction Error, SPE) —
are used together to threshold anomalies,
following the methodology outlined in Hashim
et al. (2020). A 95% confidence level is applied
to determine the threshold. This threshold
theoretically controls false alarm rates under
specific assumptions, such as linearly correlated
Gaussian data, making this approach a suitable
benchmark for evaluating the false alarm rate
guarantees of our method. Furthermore, the
number of retained PCA components is
optimized to maximize the Fl-score for each
detection scheme, ensuring their best possible
performance.

It is important to note that basic k-NN, OC-SVM,
and Isolation Forest are not inherently designed
to handle temporal dynamics. To address this
limitation, a sliding window operation has been
implemented to extract sequences from the time
series, as described in Section 4.1. Flattening the
raw window values into a vector before applying
these methods for anomaly detection improves
their capacity to capture temporal patterns.

In the k-NN scheme, a distance or similarity
metric plays a critical role in anomaly detection.
Euclidean distance is employed as the distance
metric due to its widespread use for continuous
attributes and its computational efficiency (Zhao
et al, 2018). The 95th percentile of the
Euclidean distance of the training set is utilized
as the threshold for identifying anomalies, while
the number of neighbors (k) is fine-tuned to
maximize the Fl-score. Similarly, in the OC-
SVM scheme, a baseline One-Class SVM from
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the scikit-learn library (Scikit, 2025) is used for
anomaly detection, with the hyperparameters ‘nu’
and ‘gamma’ optimized to achieve the highest
Fl-score. Additionally, a baseline Isolation
Forest is implemented, where the ‘contamination’
hyperparameter is adjusted to maximize the F1-
score as well.

A CNN-LSTM model, adapted from Abdallah et
al. (2021), is also included in the comparison. In
this model, the CNN layers extract spatial
features, which are then passed to LSTM layers
to capture temporal patterns and predict the time
series. Anomalies are detected by thresholding
the prediction errors, with the 95th quantile of
the training dataset serving as the threshold.
Additionally, we include a conventional CNN-
LSTM autoencoder, structured as shown in Fig.
1, and a conformal CNN-LSTM autoencoder
without Temporal Quantile Adjustment (TQA)
in the comparison. This allows us to evaluate the
impact of conformal prediction and TQA on
anomaly detection performance and false alarm
rate guarantees. For the conventional CNN-
LSTM model, the calibration set was excluded,
as conformal prediction was not applied, and the
0.95 quantile of nonconformity scores from the
training set was used as the anomaly detection
threshold. In the conformal autoencoder model
without TQA, the anomaly detection threshold
was set to the 0.95 quantile of nonconformity
scores from the calibration set as per the
conformal prediction pipeline, but without
employing TQA to dynamically adjust the
threshold. The comparison results are presented
in Table 2, with the best performance for each
metric highlighted in bold and the second-best
performance indicated with underlines.

As shown in Table 2, our proposed conformal
autoencoder with TQA attains the highest
Precision and F1 scores among the all methods,
while maintaining a Recall and AUROC above
0.92. These results demonstrate the model’s
robust anomaly detection capabilities, indicating
its ability to accurately distinguish between
normal and abnormal data. Compared to
methods such as PCA (T?> and SPE), k-NN,
CNN-LSTM, conventional autoencoder, and
conformal autoencoder without TQA, which rely
on the 95% quantile of certain metrics from the
training or calibration set for anomaly
thresholding, the proposed conformal
autoencoder with TQA is the only approach that

guarantees a false alarm rate below the desired
significance level (0.05). This is because other
methods lack rigorous uncertainty treatment and
statistical ~ guarantees,  particularly  under
distribution shifts in time series data. While both
the conventional autoencoder and the conformal
autoencoder without TQA applied a 0.05
significance level using nonconformity scores
from the training and calibration sets, they failed
to maintain a false alarm rate below 0.05. In
contrast, the conformal autoencoder with TQA
meets this requirement, ensuring robust anomaly
detection and reliable temporal coverage even in
the presence of distribution shifts.

Table 2. Evaluation metrics of conformal anomaly
detector and benchmark approaches.

Models Precision  Recall  F1 AUR  False

oC alarm
rate

PCA (T? and 0.7599 0.9225 0.8333 0.8922 0.1382

SPE)

k-NN 0.8863 0.9716 0.9270 0.9563 0.0591

OC-SVM 0.6879 0.9462 0.7967 0.8714 0.2035

Isolation 0.8972 0.9086 0.9028 0.9296 0.0494

Forest

CNN-LSTM 0.8826 0.9200 0.9009 0.9600 0.0580

Conventional 0.8802 0.9327 0.9057 0.9635 0.0602

autoencoder

Conformal 0.8759 0.9327 0.9034 0.9635 0.0627

autoencoder

without TQA

Conformal 0.9580 0.9231 0.9403 0.9520 0.0192

autoencoder

with TQA

Additionally, the P-value derived from the
conformal prediction pipeline provides a
quantitative measure for anomaly detection.
Since an independent calibration set (separate
from the training set) is used to generate P-
values, a higher P-value indicates a greater
likelihood that a test instance is from the in-
distribution (normal) data, making it a valuable
indicator for anomaly detection. We illustrate the
nonconformity scores and their corresponding P-
values for the test instances in our experiment, as
shown in Figure 2. Because test instances near
the anomaly detection threshold cluster closely
around it, distinguishing the degree of anomaly
becomes challenging. To address this, we
propose a new metric, -log(P-value ratio), which
can be calculated as follows.

. P

—log (P — values ratio) =— log(—=%—) (18)
Pthreshold, ¢

where Pies ¢ and Pipreshoia, ¢ are the P-values of

the test instance and the anomaly detection
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threshold at time ¢  respectively. The
demonstration of the -log(P-value ratio) can be
found at the bottom of Figure 2. In practice, real-
time monitoring of P-values and the use of
related metrics, such as 1- Py . and -log(P-
value ratio), can provide valuable insights into
the anomalous trends in time-series data.

Nonconformity Scores and Thresholds over Time

2 9257 — nonconformity Scores (MSE)
% 0.20{ — Threshold

£ 0.00

1 2500 5000 7500 10000 12500 15000 17500 20000
Time

1-P_value over time

— 1p_value
0.8{ — Threshold

1 2500 5000 7500 10000 12500 15000 17500 20000
Time

-log(P_value ratio) over time

— -log(P_value ratio)
— Threshold

lMNU |

1 2500 5000 7500 10000 12500 15600 17500 20000
Time

Fig.2 P_value over time generated by the conformal
deep autoencoder.

Additionally, we investigate the proposed
conformal autoencoder’s ability to guarantee
controllable false alarm rates by adjusting
different pre-defined significance levels within
the conformal prediction pipeline. Table 3
presents a comparison of anomaly detection
performance across various significance levels,
ranging from 0.01 to 0.15, to ensure the desired
guarantee of false alarm rate. The results indicate
that all experiments meet the required false
alarm rate guarantees, with the false alarm rate
increasing as the configured significance level
rises. Moreover, all experiments achieved FI1
scores exceeding 0.87, showcasing the
robustness of the conformal autoencoder in
delivering strong anomaly detection performance
while ensuring controllable false alarm rate
guarantees.

Table 3. Comparison between conformal anomaly
detection with different significance levels.

Significanc ~ Precision  Recall F1 AUR  False
e level ocC alarm
rate
a=015  0.8091 0.9414 08703 09181  0.1053
a=01 0.8816 0.9323 0.9062 0.9365 0.0594
a = 0.05 0.9580 0.9231 0.9403 0.9520 0.0192
a=0.02 0.9888 0.9152 0.9506 0.9552 0.0049
a=0.01 0.9939 0.9087 0.9494 0.9530 0.0026
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5. Conclusions

This study addresses the limitations of
unsupervised learning in anomaly detection for
industrial control systems, where false positives
may lead to unnecessary shutdowns or
maintenance. We propose a novel conformal
anomaly detection approach that integrates
conformal predictions with a CNN-LSTM
autoencoder, effectively capturing both spatial and
temporal features in time-series data. To further
enhance temporal coverage in the presence of
distribution  shifts, a Temporal Quantile
Adjustment (TQA) method is incorporated into
the conformal prediction pipeline. Evaluation on a
public dataset, along with comparisons to several
benchmark methods, demonstrates the proposed
model's superior performance in achieving high
anomaly detection accuracy while providing
robust guarantees for controllable false positive
rates.
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