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Accurate crowd counting and localization are essential for ensuring public safety and managing risks in densely
populated areas, such as during large events or in urban environments. They enable authorities to monitor and man-
age large gatherings effectively, thereby preventing overcrowding and potential accidents. In emergency situations,
accurate crowd data can facilitate quicker and more efficient responses by enabling the identification of high-density
areas that may require immediate attention. From the computer vision perspective, these are crucial capabilities,
demanding both precision in object counting and accurate spatial localization of individuals. In this study, we
propose an enhancement to the P2PNet, a point-based framework for crowd counting, by integrating a modern neural
network architecture, ConvNeXt, as the backbone. We explored two primary directions for the backbone integration:
utilizing a feature pyramid to combine various feature maps, and employing a single feature map from ConvNeXt,
bypassing the feature pyramid. Initial experiments indicated that the single-feature-map approach, particularly with
the very first feature map, yielded superior results. However, through a few critical modifications to the feature
pyramid module — including bilinear interpolation for upsampling, batch normalization across convolutions, and
the inclusion of ReLU in the decoder — the feature pyramid approach ultimately outperformed the single feature
map method. The revised feature pyramid, especially the first feature map output from the decoder module, achieved
the best results across multiple datasets. This way our research contributes to the broader understanding of risk
assessment and management, offering a robust solution for precise crowd density estimation and localization.

Keywords: Crowd Counting, Computer Vision, Machine Learning, ConvNeXt, P2PNet, Point-Based Framework,
Public Safety.

1. Introduction

Large-scale public gatherings, such as festivals,
sports events, demonstrations, and religious cere-
monies, are defining aspects of human interaction
and a potential issue for public safety. Although
these events foster cultural and social engagement,
they can also present substantial challenges in
terms of safety and logistic management. Past
incidents, including stampedes and overcrowded

venues, have tragically underscored the need for
effective crowd monitoring systems. For example,
failures in crowd management have led to signifi-
cant loss of life during mass gatherings, highlight-
ing the critical need for proactive tools that can
assist authorities in real-time decision-making to
prevent similar occurrences. Figure 1 shows an ex-
emplary case of a very crowded situation, in which
inappropriate monitoring and crowd management
might lead to crucial incidents.
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Fig. 1.: Exemplary view of a festival location. A
large crowd gathering in a limited space, resulting
in extremely crowded conditions with high pedes-
trian densities. Such scenarios show an increased
risk to visitor safety.

Traditional methods for crowd counting relied
heavily on manual observation or simple image
analysis techniques. These approaches, however,
are inherently limited when dealing with high-
density crowds or complex spatial arrangements.
Manual methods are cost-effective but labor-
intensive, while sensor-based technologies offer
automation and real-time data, but come with
higher costs and complexity.

In this context, automated crowd monitoring
has emerged as a promising solution. By lever-
aging advancements in computer vision and ma-
chine learning, these systems can process visual
data to estimate crowd density, track movements,
and count individuals with remarkable accuracy.
Among the various tasks within this domain,
crowd counting and localization play a particu-
larly significant role. They provide foundational
metrics for understanding spatial distributions and
planning interventions, whether for crowd disper-
sal, resource allocation, or emergency responses.

For this reason, we investigate the so-called
P2PNet by Song et al. (2021) that is one such
model that stands out for its point-based approach
to crowd counting.

To address its current limitations, this paper
proposes a novel extension of P2PNet by replac-
ing its VGG16 backbone, a neural network ar-
chitecture introduced by Simonyan and Zisser-
man (2014), with ConvNeXt introduced by Liu
et al. (2022), a state-of-the-art convolutional archi-
tecture. ConvNeXt incorporates architectural ad-

vancements inspired by vision transformers while
retaining the simplicity and efficiency of convo-
lutional neural networks (CNNs). However, the
transition to ConvNeXt necessitates adjustments
to the feature extraction and decoding modules of
P2PNet.

This paper introduces several key modifications
to the P2PNet framework to enable the integration
of ConvNeXt. In summary, this paper makes the
following contributions:

• It integrates the ConvNeXt into the P2PNet,
addressing the limitations of the VGG16 back-
bone and enhancing feature extraction.

• It introduces an updated feature pyramid.
• It provides a comprehensive evaluation of the

modified framework, demonstrating its superi-
ority over the reference approach on different
benchmark datasets.

Our approach distinguishes itself from tradi-
tional crowd counting methods by integrating a
state-of-the-art architecture, ConvNeXt, into the
P2PNet framework. This integration not only ad-
dresses the limitations of the previous VGG16
backbone but also enhances feature extraction ca-
pabilities, enabling more accurate crowd counting
and localization in complex scenarios.

2. Related Work

2.1. Crowd Counting

Crowd counting methods are generally di-
vided into detection-based and density-based ap-
proaches. Detection-based methods aim to iden-
tify and localize individual objects, such as heads
or bodies, in an image. These methods work well
in sparse crowds but struggle with dense scenes
due to heavy occlusions and overlapping indi-
viduals. To overcome these issues, density-based
methods were introduced. Instead of detecting in-
dividuals, they estimate continuous density maps
that predict the spatial distribution of the crowd.
By integrating these maps, the total count can be
calculated, as shown in works like Li et al. (2018);
Wang et al. (2020). Density-based methods per-
form well in dense crowds and provide accurate
counts. However, they lack the ability to precisely
localize individuals, which is a key strength of
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detection-based methods. This limitation has mo-
tivated research into combining both approaches
to leverage their respective strengths, particularly
through point-based methods.

Point-based crowd counting focuses on local-
izing individuals in an image by directly predict-
ing specific points that represent their heads. The
general workflow starts with generating a set of
point proposals, with a popular strategy being the
prediction of offsets from a grid of fixed reference
points to account for the translation invariance
of convolutional layers. These proposals are then
matched to the ground-truth labels, often using
a cost matrix that considers both classification
and regression values for establishing one-to-one
matching. Based on this matching, the loss is
calculated, allowing for the joint optimization of
regression and classification tasks. Compared to
other approaches, point-based frameworks offer
the advantage of precise target localization and a
simpler pipeline by avoiding intermediate repre-
sentations like density maps or bounding boxes.

An early implementation of point-based crowd
counting is P2PNet, introduced by Song et al.
(2021). It utilizes a CNN backbone as a feature
extractor and outputs a feature pyramid processed
in two parallel branches: one for point regression
and another for classification. During training, the
model learns both tasks simultaneously and pro-
duces predictions with confidence scores during
inference.

Building upon this foundation, subsequent pub-
lications have introduced refinements to improve
the performance of point-based frameworks. For
instance, Jia et al. (2024) incorporated multi-scale
feature extraction and fusion techniques to address
the challenges posed by scale variations of targets,
achieving significant performance gains. Ma et al.
(2023) proposed an improved matching strategy
that enhanced the overall accuracy of predictions.

Other contributions focus on specific aspects of
the point-based workflow. The authors in Chen
et al. (2024) introduced auxiliary point guidance
to stabilize the proposal-target matching process
and developed a feature interpolation method for
adaptive feature extraction, significantly improv-
ing the robustness and accuracy of the evaluated

models. Uysal and Bayazıt (2023) enhanced an
existing point-based approach proposed by Zand
et al. (2022) by implementing a dynamic weight
assignment mechanism. This method ensures that
weight parameters are updated dynamically dur-
ing training and optimized jointly with the model
parameters, rather than being constant, leading to
improved performance.

Recently, Ryu and Song (2024) proposed
PSLNet, which achieves state-of-the-art re-
sults across multiple benchmarks by introducing
pseudo square labels and an anchor-free detection
mechanism. This approach predicts the probabil-
ity of a center point within a responsible grid and
employs box regression and centerness estimation
to detect individuals outside the grid. The anchor-
free methodology eliminates the dependency on
predefined anchor boxes, simplifying the detec-
tion process and enhancing overall performance.

These developments highlight the evolution of
point-based crowd counting approaches, demon-
strating their potential for achieving high accu-
racy and efficiency in various crowd monitor-
ing scenarios. Our work builds on this tradition
by integrating the ConvNeXt backbone into the
P2PNet framework, refining its feature extraction
and processing capabilities for improved perfor-
mance across diverse datasets.

2.2. Traditional Approaches to Crowd
Counting

Safety authorities and event organizers employ
various traditional and technological methods to
count pedestrians during large gatherings. Man-
ual counting, using tally sheets or clickers, is
a common but labor-intensive method. Counting
stations are often set up at entry and exit points,
staffed by counters or equipped with laser and
LiDAR systems to register individuals. Mobile
applications utilizing GPS technology can track
participant movements and aggregate data for
estimating crowd sizes, while RFID technology
allows attendees to carry tags that are scanned
at checkpoints for precise tracking. Additionally,
mobile data from cellphone companies provides
insights by analyzing aggregated and anonymized
location data to estimate the number of individuals
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in specific areas over time.
For larger crowds, image data from CCTV

cameras or drones can assess pedestrian counts,
with manual counting in predefined areas allowing
for density extrapolation to estimate total counts
across the event space. However, these methods
often lack robustness in diverse crowd scenarios,
are prone to errors, and may result in rough es-
timates or limited availability for arbitrary insti-
tutions. Moreover, some approaches are restricted
to closed events and may not be suitable for open-
area festivities.

2.3. Semantic Feature Extraction

Traditional convolutional neural networks like
Residual Neural Networks (ResNets) introduced
by He et al. (2015) and models by the Visual
Geometry Group (VGG) Simonyan and Zisser-
man (2014) remain widely used for feature ex-
traction in image-based tasks. These architectures
have demonstrated strong performance and con-
tinue to serve as the backbone for many appli-
cations. However, recent advances in deep learn-
ing have introduced more modern architectures,
such as transformer-based models Dosovitskiy
et al. (2020); Liu et al. (2021) and next-generation
CNNs like ConvNeXt Liu et al. (2022). Con-
vNeXt, in particular, offers a compelling alterna-
tive to transformer-based architectures by achiev-
ing comparable performance while maintaining
the simplicity and efficiency of CNNs Jiang et al.
(2024). This makes ConvNeXt a suitable choice
for tasks that demand high accuracy with minimal
computational overhead.

In this work, we specifically utilize the
ConvNeXt-tiny variant. Its lightweight design,
with fewer parameters and lower computational
requirements, makes it easier to deploy in real-
world applications while still delivering robust
performance.

3. Methodology

3.1. The P2PNet Model

P2PNet is designed to directly regress the coordi-
nates of head positions in images, eliminating the
need for density maps or intermediate represen-
tations during training and inference. The model

takes an image as input and produces numerical
outputs, specifically pedestrian counts and image
coordinates for predicted head positions, utilizing
evenly distributed anchor points across the image.

For each anchor point, it computes a delta value
representing the distance to the predicted head
position and a confidence score assessing the de-
tection quality. This setup can be envisioned as
a grid of points, each associated with a distance
vector and a confidence score, where the distance
vector points towards the true head position.

The original implementation uses a VGG16
backbone pre-trained on ImageNet Deng et al.
(2009) as its feature extractor. P2PNet processes
four distinct feature maps from various stages of
the backbone, integrating them into a feature pyra-
mid within the decoder. Only the last three maps
are utilized, with the regression branch predict-
ing head positions and the classification branch
computing confidence scores to filter out false
positives.

3.2. ConvNeXt Backbone

To enhance P2PNet’s performance, we replace the
VGG16 backbone with the more contemporary
ConvNeXt architecture. This transition requires
adjustments due to the differing shapes of the fea-
ture maps generated by ConvNeXt. We upsample
the feature pyramid outputs to match the dimen-
sions of the corresponding VGG16 feature maps,
facilitated by an upsampling module. The princi-
pal modifications as shown in Figure 2 include:

• Bilinear interpolation for upsampling instead of
nearest neighbor,
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Fig. 2.: Resulting feature pyramid computation as
implemented using the ConvNeXt as backbone,
where C2 to C4 are the outputs of the last three
ConvNeXt stages.
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• Incorporation of batch normalization (BN)
within the feature pyramid,

• Addition of Rectified Linear Unit (ReLU) acti-
vation in the decoder module.

These modifications aim to improve the quality
of feature maps and stabilize training, enhancing
the model’s robustness and generalization per-
formance across diverse datasets and real-world
scenarios. In the following sections, we evaluate
both single feature map and feature pyramid ap-
proaches.

4. Experiments

4.1. Experimental Setup

The model is implemented in PyTorch and trained
for 1,000 epochs on an Nvidia L40 GPU using
the Adam optimizer introduced by Kingma and
Ba (2014). We adhere to the configuration used
by Song et al. (2021) for the original model set-
tings. The best-performing weights from each ex-
periment are utilized for evaluation.

For the evaluation, we conducted K = 5 ex-
periments for each configuration and report the
average results, including the confidence intervals.
All results reported in Tables 1-4 were obtained
through our own experiments. For the comparison
with the original P2PNet, we employed the avail-
able codea provided by Song et al. (2021).

4.2. Evaluation Metrics

As stated earlier, typical safety applications re-
quire two main insights: the number of individuals
within a monitored area and their distribution.
Hence, we evaluate the counting and localization
performance of the models. To measure counting
performance, we compute the mean average error
(MAE) between the ground truth and the esti-
mated pedestrian counts. Similarly, localization
performance is evaluated in accordance with the
methodology described in Song et al. (2021) as
used in the P2PNet paper. We calculate the mean
average precision (mAP), which is a standard met-
ric for object and pedestrian detection.

ahttps://github.com/TencentYoutuResearch/CrowdCounting-
P2PNet

4.3. Datasets

In our experiments, we utilize two widely recog-
nized public datasets: JHU-Crowd++ by Sindagi
et al. (2020) and UCF-QNRF by Idrees et al.
(2018), along with an internal dataset that focuses
on typical scenarios encountered in the monitoring
of public events.

The JHU-Crowd++ dataset consists of approx-
imately 4,372 images, featuring over 1.5 million
annotated individuals and capturing a variety of
scenes under different weather and lighting con-
ditions. Conversely, UCF-QNRF comprises 1,535
high-resolution images with around 1.25 million
annotations, distinguished by its extensive range
of crowd densities and complex backgrounds.

Although our internal dataset is smaller than the
aforementioned datasets (comprising 97 images
with approximately 41,400 annotated individu-
als), it is specifically utilized for cross-domain
evaluation. This evaluation is particularly rele-
vant, as it closely reflects real-world applications,
where training is often conducted on data from
diverse domains prior to deployment in the final
application domain.

Together, these three datasets provide criti-
cal benchmarks for assessing the performance of
crowd counting models in real-world scenarios.

4.4. ConvNeXt Backbone Comparison

We first compare the different available versions
of ConvNeXt, namely tiny, small, and base, ex-
cluding the large model, before making a final
comparison with the original P2PNet.

4.4.1. Crowd Counting

Initially, we examine the different feature levels
and their impact on counting performance. We
investigate the updated feature pyramid, specifi-
cally focusing on the first feature map, the second
feature map, and the complete feature pyramid.
Table 1 presents an overview of our results.

When comparing the individual feature maps,
we observe that utilizing the first feature map (F2)
generally leads to superior performance compared
to the second feature map (F3). This phenomenon
can be attributed to the fact that F2 encompasses
information from subsequent feature maps. We
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Table 1.: Comparison of the different feature maps and the overall feature pyramid, for three ConvNeXt-
architectures: base, small and tiny. All experiments were conducted on the JHU dataset. Best results are
shown in bold.

Configuration Feature Map 1 Feature Map 2 Feature Pyramid
count ↓ loc. ↑ count ↓ loc. ↑ count ↓ loc. ↑

ConvNeXt-B 70.2 ± 0.2 76.3% ± 0.2% 57.4 ± 0.1 76.3% ± 0.2% 63.7 ± 0.4 75.8% ± 0.1%
ConvNeXt-S 66.7 ± 0.4 74.6% ± 0.3% 79.0 ± 0.8 63.0% ± 0.1% 63.9 ± 0.3 74.3% ± 0.1%
ConvNeXt-T 67.4 ± 0.3 74.7% ± 0.1% 58.5 ± 0.1 76.5% ± 0.1% 54.2 ± 0.2 77.6% ± 0.1%

find that the regression and classification branches
of our architecture struggle with the deeper, more
complex information contained within the second
feature map. This difficulty may be due to the
smaller size of these feature maps and the partic-
ularly condensed nature of the information, which
complicates our ability to extract relevant local
information for the anchor points. In contrast, we
note that the complete feature pyramid, which
integrates both levels with an extended range of
information, demonstrates even better results than
using only the first feature map. This trend is con-
sistently observed across all backbone variants.

Interestingly, the largest version of ConvNeXt
(i.e., base) benefits from the second feature map,
which might be due to the model size. However,
this observation may indicate potential overfitting,
as our cross-domain evaluation reveals poorer per-
formance compared to the other models.

Consequently, we use the complete feature
pyramid to examine the counting performance of
the newly introduced feature pyramid against the
original version for each of the ConvNeXt back-
bones. Table 2 displays the results, consistent with
the experimental setup described in Section 4.1.
On average, the new feature pyramid improves
pedestrian counts by reducing the error by approx-
imately 14% over the initial feature pyramid.

4.4.2. Localization

Analogously to the counting experiments, we
evaluate the localization performance of the dif-
ferent backbones. The results are also contained
in Table 1. As indicated in Section 4.4.1, F2
outperforms F3 not only in counting but also in

Table 2.: Counting performance comparison be-
tween the original and proposed versions of the
feature pyramid. Experiments are conducted on
the JHU dataset, reporting both the mean (μMAE)
and standard error. Lower values indicate better
performance.

Configuration old ↓ new ↓

ConvNeXt-B 74.9 ± 1.7 63.7 ± 0.4
ConvNeXt-S 62.0 ± 0.4 63.9 ± 0.3
ConvNeXt-T 71.0 ± 1.2 54.2 ± 0.2

localization performance. This observation is rea-
sonable, as counting and localization are closely
related tasks. The localization results obtained for
the feature pyramid that incorporates both feature
maps consequently reinforce our findings from
Section 4.4.1. Table 3 presents a comparison be-
tween the old and new versions of the feature
pyramid for the localization task.

Table 3.: Localization performance comparison
between the original and proposed versions of the
feature pyramid. Results are evaluated on the JHU
test split, with both the mean (μmAP) and standard
error reported for each experiment. Higher values
indicate better performance.

Configuration old ↑ new ↑

ConvNeXt-B 65.0% ± 0.3% 75.8% ± 0.1%
ConvNeXt-S 69.5% ± 0.3% 74.3% ± 0.1%
ConvNeXt-T 66.0% ± 0.5% 77.6% ± 0.1%
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We observe an average improvement of 14%
over the original feature pyramid in localization
performance. These results underscore the advan-
tages of employing a modern neural network ar-
chitecture as a backbone.

4.4.3. Backbone Choice

In the preceding sections, we investigated the
counting and localization performance of P2PNet
using the different ConvNeXt backbones. Al-
though the base version consistently demon-
strates strong performance in all experiments and
achieves the best results, our final choice is the
tiny version. The improvement of the base over
the tiny ConvNeXt is marginal, yet it incurs nearly
four times the computational cost. This consid-
eration is particularly important for real-world
applications, where computational resources are
often limited.

4.5. P2PNeXt versus P2PNet

The results in Table 4 compare the counting and
localization performance of P2PNeXt and P2PNet
across JHU and UCF-QNRF, as well as our inter-
nal dataset.

On the JHU dataset, the P2PNeXt outperforms
P2PNet, indicating a relative improvement in lo-
calization of approximately 3%. In terms of MAE,
P2PNeXt reduces the counting error, representing
a relative improvement of about 2%. These obser-
vations are underlined by the results obtained on
the UCF-QNRF dataset. P2PNeXt shows better
performance, attaining an mAP improvement of
about 4% over P2PNet. Furthermore, P2PNeXt
has a lower MAE, reflecting a relative improve-
ment of approximately 20%. For our internal
dataset, P2PNeXt excels with an mAP of 80%,
outperforming P2PNet by around 6%. The MAE
for P2PNeXt is also better at 66.9, compared to
71.4 for P2PNet, translating to a relative improve-
ment of about 9%. Since both the results on the
internal dataset and the JHU dataset were obtained
with the same model, these findings indicate that
our proposed update to P2PNet leads to an im-
proved generalization.

In summary, P2PNeXt demonstrates superior
counting accuracy across all evaluated datasets,

Table 4.: Comparison of P2PNeXt and P2PNet
with respect to counting performance on two
widely used public datasets. All results were ob-
tained in our experiments.

Dataset Model mAP ↑ MAE ↓

JHU our 77.6% ± 0.1% 54.2 ± 0.2
P2PNet 75.5% ± 0.1% 55.0 ± 0.1

UCF-QNRF our 72.8% ± 0.1% 138.9 ± 0.9
P2PNet 70.1% ± 0.5% 174.4 ± 1.5

internal our 80.0% ± 0.2% 64.9 ± 1.2
P2PNet 75.1% ± 0.3% 71.4 ± 0.5

including JHU, UCF-QNRF, and our internal
dataset. This enhanced performance is particularly
notable, as it results in significant improvements
in localization accuracy as well. Overall, the ar-
chitectural changes in P2PNeXt yield significant
advancements in typical crowd counting tasks.

4.6. Qualitative Evaluation

Finally, we examine examples from the internal
dataset as given in Figure 3. Overall, the model

(a) Due to low contrast and
strong image noise certain
pedestrians are missed.

(b) Many matched people
with almost no false nega-
tives and false positives.

Fig. 3.: Exemplary results obtained using the
P2PNeXt on our internal evaluation dataset. The
images have been converted to grayscale to en-
hance the contrast.

demonstrates strong performance in cross-domain
tests. However, specific instances lead to inaccu-
racies, particularly in missed detections of indi-
vidual pedestrians, including children in strollers,
or in low-light conditions where contrast is di-
minished. Notably, false negatives where actual
pedestrians are not detected occur more frequently
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than false positives, which are incorrect identifi-
cations of non-existent pedestrians. This tendency
underscores the model’s challenges in detecting
certain groups under difficult conditions.

5. Conclusion

This paper introduces an enhanced version of the
P2PNet framework by integrating the ConvNeXt
architecture to improve crowd counting and local-
ization. Our results show a 4% increase in mAP
on the UCF-QNRF dataset and a 20% reduction
in MAE, demonstrating significant improvements
in both accuracy and reliability for crowd manage-
ment applications. Additionally, evaluations on an
internal dataset indicate that P2PNeXt performs
well in cross-domain scenarios, achieving an mAP
of 80% and an MAE of 64.9, which highlights
its robustness for real-world applications. These
improvements not only boost benchmark perfor-
mance but also enhance the model’s ability to gen-
eralize. Overall, this work marks a significant step
forward in automated crowd counting for public
safety applications.
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