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The paper presents a distance-based Approximate Bayesian Computation framework involving the use of the
Hellinger distance to perform stochastic model updating, and to subsequently perform an accreditation validation
procedure based on the 2008 Sandia thermal problem. In computing the Hellinger distance, the adaptive-binning
algorithm is implemented to adaptively select an appropriate bin number to approximate the probability density of
the experimental data and the model prediction. The distance function subsequently quantifies the difference in the
distribution between the two statistical objects. To verify the proposed stochastic model updating framework, the
approach is implemented to perform a model calibration on the aleatory input variables of a dynamic temperature
model of a slab material based on limited experimental data. This involves the use of the Staircase Density Function
to calibrate and characterise the distribution over the input variables based on limited data, thereby providing for a
distribution-free approach and eliminating the element of model uncertainty. A stochastic validation of the calibrated
model is then performed against a set of accreditation validation experiment data. The results showed that using
the mean estimates on the inferred shape parameters of the Staircase Density Function yields a better validation
performance by the resulting calibrated model, in contrast to the case where the Maximum A-posteriori estimate on
the inferred parameters is used.
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1. Introduction

When addressing engineering problems, a key as-
pect is the need for well-calibrated and validated
models which are representative of a physical sys-
tem. This is often achieved via stochastic model
updating, especially in instances where data is
limited and uncertainties are present. Generally
speaking, such uncertainties can be categorised
into two types: 1) Aleatory uncertainty which is
an irreducible uncertainty due to the inherent vari-
ability of a given random variable; and 2) Epis-
temic uncertainty which is a reducible uncertainty
due to a lack of knowledge. However, there exists

scenarios where both types of uncertainties exist
simultaneously. Such is often referred to as poly-
morphic uncertainty (Lye et al. (2024)) which is
the interest of the work presented in the paper.

The objectives of the paper are three-fold: 1) to
proposed the use of the Hellinger distance to per-
form the distance-based Approximate Bayesian
Computation for stochastic model updating. To
the best of the authors’ knowledge, the proposed
approach is yet to be investigated or discussed in
the existing literature; 2) to demonstrate its fea-
sibility via a model validation problem based on
a real-world set-up involving physical experiment
data; and 3) to provide a tutorial on the proposed
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approach and enhance the understanding among
the readers.

To realize such objectives, the paper is struc-
tured as follows: Section 2 reviews the concept of
the distance-based Approximate Bayesian Com-
putation framework for stochastic model updat-
ing, as well as the mathematical formalism of the
Hellinger distance; Section 3 introduces the case
study problem statement which is based on the
Sandia thermal problem originally presented by
Dowding et al. (2008); Section 4 presents and
discusses the results from the stochastic model
updating and the subsequent model validation re-
sults; and Section 5 summarises the key take-
aways from the presented work, before drawing
the paper to a close.

2. Bayesian Model Updating

A standard stochastic model updating approach is
the Bayesian model updating technique to which
its mathematical framework is defined as (Lye
et al. (2023); Lye (2023)):

P (θ|D,M) =
P (D|θ,M) · P (θ|M)

P (D|M)
(1)

whereby θ represents the vector of inferred pa-
rameter(s), D represents the vector of observed
data, M represents the model that is being con-
sidered for updating, P (θ|M) represents the
prior, P (D|θ,M) represents the likelihood func-
tion, P (θ|D,M) represents the posterior, and
P (D|M) is the model evidence term or the nor-
malising constant to ensure that P (θ|D,M) inte-
grates to 1. Detailed reviews on each of the above
terms are found in Lye and Marino (2023); Lye
et al. (2020, 2023).

The term P (D|M) is often neglected as it is
a numerical constant and is independent of θ.
Hence, P (θ|D,M) can be re-expressed in its un-
normalised form following:

P (θ|D,M) ∝ P (θ|M) · P (D|θ,M) (2)

To sample from the un-normalised P (θ|D,M),
direct Monte Carlo sampling becomes inappli-
cable and advanced sampling approaches are to
be implemented. One such approach is the Tran-
sitional Ensemble Markov Chain Monte Carlo

(TEMCMC) sampler, proposed by Lye et al.
(2022), to which its description is outlined in Sec-
tion 2.1.

2.1. Transitional Ensemble Markov
Chain Monte Carlo

The TEMCMC sampler is a state-of-the-art vari-
ant of the Transitional Markov Chain Monte
Carlo (TMCMC) sampler, where the Metropolis-
Hastings sampler is replaced with the Affine-
invariant Ensemble sampler as the MCMC ker-
nel to improve the mixing performance of the
sampler and to overcome the computational chal-
lenge of sampling from a highly skewed and
anisotropic posterior. Like the TMCMC sampler,
the TEMCMC sampler generates samples from
P (θ|D,M) through a series of intermediate dis-
tributions known as “transitional” distributions P j

defined as (Ching and Chen (2007)):

P j ∝ P (θ|M) · P (D|θ,M)βj (3)

where j = 0, 1, . . . ,m is the iteration number, and
βj is the tempering parameter such that β0 = 0 <

β1 < · · · < βm = 1.
In the interest of the length of the paper, the

readers are referred to Lye et al. (2022) for full
details on the TEMCMC algorithm and its imple-
mentations.

2.2. Approximate Bayesian Computation

An essential component of the Bayesian model
updating procedure is the definition of the like-
lihood function P (D|θ,M) as shown in Eq. (1).
Under the independence assumption between Nobs

observations, the analytical likelihood function is
defined as:

P (D|θ,M) =

Nobs∏
k=1

P (Dk|θ,M) (4)

where Nobs denotes the total number of observa-
tions.

The evaluation of Eq. (4) can be a computa-
tionally demanding endeavour when: 1) the model
M becomes computationally expensive; and 2)
a large number of model evaluations is required
(Lye et al. (2024)). To address the above issues, Bi
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et al. (2019) proposed the use of the approximate
Gaussian likelihood function defined as:

P (D|θ,M) = exp

⎡
⎣−

(
d(D,Dsim)

ε

)2
⎤
⎦ (5)

where d(•) is the distance function serving to
quantify the statistical difference between the dis-
tribution of the data D and Dsim = M(θ), while
ε is the width-factor which controls the central-
ization degree of the resulting posterior. For the
work presented in the paper, the Hellinger distance
serves as the distance function to which its math-
ematical formalism is reviewed in Section 2.3.

In the interest of the length of the paper, the
readers may refer to the tutorial paper on Approx-
imate Bayesian Computation by Lye et al. (2024).

2.3. Hellinger Distance

The Hellinger distance dH is defined mathemati-
cally as (Hellinger (1909)):

dH(D,Dsim) =√√√√∑Nbin
xnd

=1 · · ·
∑Nbin

x1=1

(√
pD(x)−√

pDsim(x)
)2

2
(6)

where x = (x1, . . . , xnd
) denotes the input bin

vector, nd denotes the total number of data com-
ponents, and Nbin is the total number of bins used
to approximate the probability density functions
of D and Dsim which are denoted respectively
as pD(•) and pDsim(•) respectively. It is observed
from Eq. (6) that dH ∈ [0, 1].

To compute Nbin, the adaptive-binning ap-
proach proposed by Zhao et al. (2022) is imple-
mented:

(1) Compute
Δsim = max

(
max |Dsim

i,m −Dsim
j,m|

)
; where

i, j = 1, . . . , N , m = 1, . . . , nd, and N

denotes the total samples obtained from the
posterior.

(2) Compute the Euclidean distance between
the data set D and Dsim: dE(D,Dsim) =√
(Dsim −D) · (Dsim −D)T; where Dsim

and D are the respective means of Dsim and
D.

(3) Compute w =
log(Δsim+1)

max(N1/3,Nobs
1/3)

× exp (dE)

(4) Compute Nbin = Δsim

w , and ensure that Nbin ∈[
2, max(N,Nobs)

10

]
.

3. Case Study: Sandia Thermal Problem

3.1. Problem description

The set-up is based on the challenge problem pub-
lished by Dowding et al. (2008) involving a slab
material which can be used in the construction
of the nuclear reactor components (e.g., reactor
vessel containment structure). The temperature
response model MT of the slab material under
the different heating conditions is defined accord-
ing to the following physics equation such that
(Dowding et al. (2008)):

MT (x, t) = Ti , for t = 0s (7)

MT (x, t) =

Ti +
qL

k
· [ (k/ρCp)t

L2
+

1

3
− x

L
+

1

2

( x

L

)2

−

2

π2

6∑
n=1

1

n2
exp

(
−n2π2 (k/ρCp)t

L2

)
cos

(
nπ

x

L

)
]

, for t > 0s

(8)

where Ti = 25.0oC denotes the initial ambient
temperature, L = 0.0190 m denotes the slab’s
thickness, x denotes the location variable along
the slab’s thickness, t denotes the time elapsed
since the start of the heating process, q = 3000

W/m2 denotes the heat flux, k denotes the slab’s
thermal conductivity [W/moC], and ρCp denotes
the heat capacity of the slab material [J/m3oC].

For the problem, the material properties k and
ρCp are aleatory variables whose respective dis-
tributions are to be determined based on a set of
data illustrated as a scatter plot in Figure 1, whose
numerical values are presented in Table 4 of the
literature by Dowding et al. (2008) (i.e., see case
Nc = 20). As such, there are two objectives to the
problem:



174 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

(1) to characterise the variability of k and ρCp

under limited data; and
(2) to validate MT over a set of accreditation val-

idation data, given the calibrated distribution
over k and ρCp.

3.2. Methodology

The initial analysis of the scatter plot in Figure
1 indicate a significant statistical correlation be-
tween k and temperature T , with a Pearson corre-
lation coefficient of 0.870. In contrast, the statis-
tical correlation between ρCp and temperature T

yielded a Pearson correlation coefficient of 0.127.
For this reason, the variable ρCp is assumed to be
temperature-independent, while the dependence
of k on T is modelled via a linear regression
procedure which yielded:

k(T ) = (2.25× 10−5) · T + 0.05 + εk (9)

where εk is the residual term, which is also an
aleatory variable. Such observation is also con-
sistent with the physics of the system where
the thermal conductivity of the material can be
temperature-dependent. Using Eq. (9), the data for
εk is computed from that of k presented in Figure
1 to which its resulting histogram representation
is presented in Figure 1.

Given no information on the distribution class
of the aleatory variables, to eliminate the element
of model uncertainty, a distribution-free approach
involving the Staircase Density Function (SDF) is
implemented to characterise the variability of εk
and ρCp. The SDF is a moment-matching meta-
model that models a given data distribution based
on its rth central moment mr defined as (Crespo
et al. (2018)):

mr =

∫ z

z

(z−μ)r ·fz(z)·dz; for r = 0, 1, 2, . . .

(10)
where the integration limits Δz = [z, z] is the
bounded support set over the staircase random
variable z, the function fz is the probability den-
sity function, and μ is the expected value of the
data variable z.

The probability density function fz of the SDF

is defined as (Crespo et al. (2018)):

fz =

{
hib ∀ z ∈ ((ib − 1) · κ, ib · κ] , for 1 ≤ ib

0 , otherwise
(11)

where nb = 25 is the number of bins, hib ≥ 0

is the height of the SDF in the ib
th bin, and κ =

2/nb is the length of each sub-interval.
Based on Eq. (10), it is to be noted that the

moments m0 = 1, m1 = 0, m2 is the variance,
m3 is the third-order central moment, and m4 is
the fourth-order central moment. The constraints
on the moments are such that: μ ∈ [z, z], m2 ∈[
0, (z−z)2

4

]
, m3 ∈

[
− (z−z)3

6
√
3

, (z−z)3

6
√
3

]
, and m4 ∈[

0, (z−z)4

12

]
. Details on the SDF and the derivation

of the aforementioned constraints are found in the
literature by Crespo et al. (2018).

The SDF is calibrated on the data set of εk
and ρCp via the Hellinger-based stochastic model
updating framework described in Section 2. The
bounds Δz on the SDF for the respective variables
are defined in Table 1 to ensure sufficient degree
of freedom in the variability characterisation. The
inferred parameters of the SDF are μ, m2, m3, and
m4 for which each of them is assigned a Uniform
prior with bounds defined in Table 1.

For the approximate Gaussian likelihood func-
tion, the width parameter ε is decided to provided
for 5 to 6 sampling iterations by the TEMCMC
sampler, which ensures sufficient convergence of
the sample distribution to the posterior. The values
of ε used in calibrating the SDF of εk and ρCp are
defined in Table 1.

4. Results and Discussions

The resulting posteriors on the inferred parameters
are illustrated in Figure 2. As seen in the figure,
the parameter m3 is normalized to m3/m2

3/2

which denotes the skewness term, while the pa-
rameter m4 is normalized to m4/m2

2 which de-
notes the kurtosis term. As part of the challenge,
the analyst is to provide a distribution over the
data set of k and ρCp. There are two ways to con-
struct the distribution using the SDF: 1) using the
Maximum A-posteriori (MAP); or 2) the mean es-
timates from the posterior. The numerical results
to the respective type of estimates are presented in
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Fig. 1. Scatter plot and histogram representation of the data for k, εk, and ρCp obtained from Dowding et al.
(2008).

Table 1. Details on the SDF parameters for εk and ρCp.

Parameter Description εk ρCp

ε Width factor 0.10 0.05

Δz SDF bounds [−2, 2]× 10−2 W/moC [3, 5]× 105 J/m3oC

μ Mean [−2, 2]× 10−2 W/moC [3, 5]× 105 J/m3oC

m2 Variance [0, 16]× 10−4 (W/moC)2 [0, 1]× 1010 (J/m3oC)2

m3 Third central moment
[
− 32

3
√
3
, 32
3
√
3

]
× 10−6 (W/moC)3

[
− 4

3
√
3
, 4
3
√
3

]
× 1015 (J/m3oC)3

m4 Fourth central moment
[
0, 643

]× 10−8 (W/moC)4
[
0, 43

]× 1020 (J/m3oC)4

Table 2, while the resulting calibrated distribution
of k and ρCp given the respective estimates are
illustrated in Figure 3.

Subsequent analysis seeks to quantify and com-
pare the validation performance of the tempera-
ture response model MT given the calibrated SDF
of k and ρCp when the MAP estimates of the
inferred parameters are used versus that when the
mean estimates are used. To do so, a series of
accreditation heating experiment has been con-
ducted on the slab material for which 3 sets of 21
data points of the material response temperature
T are obtained across time t ∈ [0, 1000] s at
x = {0, L/2, L} respectively. The numerical data
values are provided in Table 8 of the literature by
Dowding et al. (2008) (i.e., see Exp 1).

The model validation procedure, based on a

previous work by Ferson et al. (2008), is per-
formed for a given value of x and time t ∈
[0, 1000] s at time-step Δt = 1 s to which the
procedure follows:

(1) For t ≥ 1 s, generate a sample of εk and ρCp

from their respective calibrated SDF. From
which, compute the value of k via Eq. (9)
using the sample realization of εk, and the
output temperature T1 computed from model
MT at time t− 1;

(2) Compute the temperature T2 via model MT .
After which, compute the term δ = |T2−T1|.
If δ > 0.005oC, proceed to Step (3). Other-
wise, proceed directly to Step (4);

(3) Set T1 = T2 and compute the new value of T2

via model MT with the same seed value of k
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Fig. 2. The posterior distribution on the inferred parameters obtained via the Hellinger distance-based stochastic
model updating framework.

Table 2. Posterior estimates on the SDF parameters for εk and ρCp.

Parameter Description Estimate εk ρCp

μ Mean Mean −8.00× 10−4 W/moC 3.99× 105 J/m3oC

MAP −6.71× 10−4 W/moC 3.98× 105 J/m3oC

m2 Variance Mean 6.37× 10−5 (W/moC)2 3.12× 109 (J/m3oC)2

MAP 5.86× 10−5 (W/moC)2 3.45× 109 (J/m3oC)2

m3/m2
3/2 Skewness Mean −2.80× 10−1 −5.38× 10−2

MAP −2.52× 10−1 −9.66× 10−2

m4/m2
2 Kurtosis Mean 4.54 2.59

MAP 3.83 2.38

and ρCp obtained in Step (2). Compute δ and
repeat this step until δ < 0.005oC;

(4) Set t = t + Δt, and repeat Steps (1) to (3)
until the termination time t = 1000 s.

The above procedure yields one set of outputs
from MT across all t, and a particular x given
one stochastic realization of k and ρCp from
their respective calibrated SDF. To account for
the variability, the above procedure is repeated
Na = 1000 times from the Na realizations of
k and ρCp. The Na ECDF representation of the
temperature output from MT across the time t

obtained at each x are presented in Figure 4. As

seen in the figure, the probability-box encloses the
ECDF of the validation data which provides a first
indication that the temperature model MT given
the corresponding calibrated SDF of k and ρCp

is sufficiently validated against the accreditation
validation data.

The area metric dA is computed to quantify
the model validation performance by reflecting the
degree of agreement of each model output ECDF
against a given set of accreditation validation data.
The area metric dA is defined mathematically as:

dA =

∫ ∞

−∞
|FMT

(y)− Fdata| · dy (12)
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Fig. 3. The resulting calibrated SDF on εk and ρCp.

where FMT
is the ECDF of the model output,

and Fdata is the ECDF of the given accreditation
validation data. From which, the mean and stan-
dard deviation values of dA is obtained for which
the results are represented as bar-charts in Figure
5. Based on the results, it is observed that the
resulting calibrated SDF on k and ρCp using the
posterior mean on the inferred parameters results
in a significantly better model validation perfor-
mance against that when the posterior MAP on the
inferred parameters are used.

5. Conclusion

The paper proposed a Hellinger distance-based
stochastic model updating framework which con-
tributes to the existing literature on the distance-
based Approximate Bayesian Computation. From
there, the proposed framework is implemented
to perform an accreditation validation procedure
based on the Sandia thermal problem by Dowding
et al. (2008) where the shape parameters of the
Staircase Density Function is inferred to charac-
terise the variability of the aleatory model inputs,
thereby providing a distribution-free approach to
the problem. The results showed that the use of
the posterior mean estimate values as input to
the Staircase Density Function results in a better
model validation performance than the posterior
Maximum A-posteriori estimates.

Future research works may consider the follow-
ing:

• implementing the proposed framework in up-
dating models with a larger number of in-
ferred parameters (e.g., > 10 parameters) to
assess its robustness; and

• to further improve the adaptive-binning al-
gorithm towards improving the distribution
approximation in cases where the data set is
scarce (e.g. 6 data-points).

To provide a better understanding of the pro-
posed framework and reproduce the results pre-
sented in the paper, the MATLAB codes used
in the analysis are accessible on GitHub via:
https://github.com/Adolphus8/
stochastic-model-updating.git
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