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Power grid outage planning is a class of preventive maintenance (PM) problems whose main objective is the
optimal allocation of maintenance activities, such as component repairs, refurbishments, and upgrades. To ensure
safe operations during maintenance, N-1 security constraints are commonly enforced, creating robust preventive
maintenance plans against single-component failures. While uncertainty has been addressed extensively in the PM
optimization literature, many grid outage planning approaches are deterministic. Deterministic security-constrained
outage planning problems, due to their combinatorial nature, are challenging problems, and incorporating un-
certainty can further increase the computational burden and challenge numerical tractability. However, omitting
sources of uncertainty can compromise the cost-effectiveness and safety of the plan. This work addresses this gap
by introducing a risk-informed approach to power grid outage planning that accounts for operational and planning
uncertainties. We present an illustrative case study of a planning problem under uncertainty based on our previous
work on risk-informed optimisation. We discuss the benefits and drawbacks of the proposed risk-informed approach
and speculate on further extensions for power grid outage planning and related problems.
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1. Introduction

Power grid outage planning (OP) are preventive
maintenance problems that focus on the optimal
allocation of maintenance activities, such as com-
ponent repairs and upgrades. Ensuring safe grid
operations while scheduling long-term PM is of
paramount importance. To achieve this objective,
N-1 security constraints are typically enforced,
preventing overloading and instabilities for any
(unplanned) single component failure Wang et al.
(2015). This class of problems is also referred to
as security-constrained OP problems (SCOP).

In the existing literature, most of the available
works on SCOP rely on deterministic approaches
Sharma et al. (2011); Vassiliadis and Pistikopou-
los (2001); de Jonge and Scarf (2020), where the
major sources of uncertainties are neglected. Only
a limited number of works include uncertainty
within their formulations, particularly relying on
stochastic programming approaches Rocha et al.
(2023); Wu et al. (2010).

The inclusion of uncertainty in SCOP formula-
tions is a challenging task, as it can considerably
increase the computational burden. In fact, deter-
ministic SCOP present already significant com-
putational challenges due to their combinatorial
nature, making them prohibitive for large systems
Eygelaar et al. (2018). In order to address this
issue, various alternative approaches have been
proposed, such as population-based methods Ha-
davi (2008); Zanghi et al. (2012), decomposition
approaches Rodrı́guez et al. (2021) and heuristics
Kralj and Petrovic (1995); Gubin et al. (2023).

Since PM activities are scheduled over a pro-
longed period of time (typically several months),
omitting sources of uncertainty when optimizing
these activities can lead to poor performance and
unsafe grid operations. In this paper, we explore
the inclusion of uncertainty in SCOP by intro-
ducing a risk-informed SCOP approach. Risk-
informed frameworks have known limited appli-
cations in the field of power grids, with the notable
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exceptions of the seminal works of Jiang et al.
(2002, 2004) and the more recent advancements
by Eygelaar et al. (2018).

To address this gap, we investigate the inclu-
sion of uncertainty in power system OP problems
through a data-driven, risk-informed approach.
Taking advantage of the growing availability of
open data, we propose a novel framework for
OP problems that incorporates uncertain, risk-
based operational constraints. First, drawing on
our previous work Rocchetta et al. (2024), we
introduce the concept of risk-informed optimiza-
tion and its relationship to traditional optimization
approaches under uncertainty. Second, we present
an illustrative case study, applying the proposed
framework to an OP problem under uncertainty,
and discussing its benefits and limitations. Fi-
nally, we outline potential extensions of the risk-
informed framework for OP and related problems,
offering pathways for future research.

The rest of this paper is organized as follows: in
Section 2, we describe the deterministic version
of the SCOP problem; in Section 3, we present
the proposed risk-informed approach; in Section
4, we outline the illustrative case study; in Section
5, we present the preliminary results; in Section 6,
we provide preliminary conclusions and possible
extensions.

2. Deterministic SCOP problem

A power transmission grid comprises a set of
N components, including nB busses, nL trans-
mission lines, nG generators, transformers, etc.
A SCOP problem addresses the scheduling of
PM activities on a subset of these N transmis-
sion components. These PM activities must be
scheduled such that a generation-demand bal-
ance is achieved, capacity constraints are satis-
fied, and safety-related constraints, including un-
planned N-1 contingency scenarios, are accounted
for. While security-constrained deterministic for-
mulations provide a powerful tool for schedul-
ing PM activities in power grids, they neglect
any source of uncertainty about future opera-
tional states, including contingencies and demand
deviations. Our work investigated two formula-

tions: a deterministic SCOP (det-SCOP) and risk-
informed SCOP to embed within the problem
information from a probabilistic risk assessment
model to prescribe more reliable and cost-efficient
PM schedules.

2.1. The proposed det-SCOP formulation

Consider a set of nO components that require
maintenance (planned outages) O = {oi}nO

i=1, a
set of nC unplanned failures (contingencies) C =

{ci}nC
i=1, and a discretized set of nT planning steps

T = {t}nT
t=1 within a planning horizon (e.g., one

year). The main objective of the SCOP problem
is to define a schedule, or timetable, for the nO

maintenance activities while adhering to opera-
tional, budget, and safety constraints.

2.1.1. Outage plan and variables

The decision variables in the SCOP formulation
are defined as

X = (XPM,Xplan,Xcont) ,

which comprises three main components, i.e., out-
age planning variables, XPM, operational vari-
ables in normal planned outage states, Xplan,
and operational variables under unplanned contin-
gency states, Xcont.

Planned outage XPM = (x, s, e):
Here x ∈ {0, 1}nT×nO , is a binary matrix rep-
resenting the scheduled timetable for the PM ac-
tivities, such that xt,o = 1 if outage o ∈ O is
scheduled at time t, and 0 otherwise. Similarly to
x, binary matrices s, e represent the starting and
ending indicators for the PM activities, respec-
tively.

Normal states Xplan = (PG,f , ζ):
f ∈ R

nT×nL represents the line flow matrix,
with ft,l ∈ R being the flow at line l at time
t; PG ∈ R

+,nT×nG , is the non-negative power
generation matrix, with element Pt,g defining the
power generated by g at time t. The variables
ζ ∈ R

+,nT×nB are non-negative nodal demand-
supply gaps, i.e. the load shedding.
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Contingency states Xplan = (PG,C ,fC , ζC):
Same variables defined for the normal states but
defined for the operations under unplanned con-
tingency states, as denoted by the subscript C.

2.1.2. The optimization problem

A compact formulation for the deterministic out-
age planning problem is given as in (1):

max J(X)

s.t:

hPM(X) ≤ 0,

hcapacity(X) ≤ 0,

hbalance(X) = ζ,

hc(X) = 0, ∀c ∈ C

(1)

where J(X) defines the objective function to
maximize (more details in the next section), hPM

represents the constraints on the PM activities,
hcapacity are the capacity constraints of network
components, i.e., generators, line thermal limits,
hbalance are nodal power balance constraints, and
hc are security constraints for all unplanned c ∈ C.

For the sake of simplicity, the operations of
the grid are modeled using a linear transmission
model. In future extensions, DC power flow con-
straints or other power flow models will be in-
cluded in the problem formulation.

2.1.3. Objective function

The det-SCOP problem optimizes a cost func-
tion that balances outage costs, load shedding
costs weighted using the value of the lost load
(VoLL), and operational generation costs, both un-
der planned and unplanned contingency scenarios.
This objective is formulated as in (2):

J(X) =
∑
t,o

T − t

T
· xt,o · ρo

− VoLL ·
∑
t,b

(
ζt,b +

∑
c

ζct,b,c

)

−
∑
t,g

wg · Pt,g,

(2)

where ρo is a priority factor for outages based
on their relative importance, ζt,b, ζct,b,c are the

load sheddings at time t and node b under normal
conditions and unplanned contingency scenario c,
respectively, and Pt,g is the power generated by
generator g at time t weighted by its generation
cost wg .

2.1.4. PM constraints

Let hPM(X) ≤ 0 represent the set of PM con-
straints for all outages and all time steps. These
constraints are defined ∀t = 1, ..., nt − 1 and ∀o
to ensure consistent start and end indicators:

st,o ≤ st+1,o,

et,o ≤ et+1,o,

st,o ≤ et+1,o,

Additionally, equality constraints on the PM
tasks duration and number (linked to maintenance
crew capacity) are imposed as follows:

st,o − et,o = xt,o, ∀t, o∑
o∈O

xt,o = mt, ∀t ∈ T ,

∑
t∈T

xt,o = do, ∀o ∈ O,

where mt is the maximum number of allowed
PM tasks at time t, and do defines the expected
duration of the maintenance activity o.

2.1.5. Component state and capacity
constraints

To model the effect of the PM activities on the
component’s state, a binary variable yt,comp is de-
fined for each element comp in the grid as follows:

yt,comp =

{
1− xt,comp, if comp ∈ O,

1, otherwise.

Note that yt,comp = 0, only if the component
comp belongs to the planned outage set and if a
PM activity is scheduled at time t. The constraint
hcapacity in program (1), comprises a set of gener-
ation and line capacity constraints under normal
planned conditions. The generation capacity lim-
its are imposed ∀g ∈ G, t ∈ T as follows:

yt,gP
min
t,g ≤ Pt,g ≤ yt,gP

max
t,g , (3)
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where Pt,g ∈ [Pmin
g , Pmax

g ], or Pt,g = 0, if g

undergoes maintenance at time t. Line capacity
constraints ∀l ∈ L, t ∈ T are also imposed as
follows:

−yt,lf
max
l ≤ ft,l ≤ yt,lf

max
l , (4)

where fmax
l , is the maximum flow allowed on line

l, and yt,l forces ft,l = 0 if xt,l = 1.

2.1.6. Power balance constraints

Let hbalance(X) = ζ represent the traditional
nodal balance constraints, defined for each node
n as follows:

P gen
t,n − P d

t,n −
∑
k∈N

(ft,(k,n) − ft,(n,k)) = −ζt,n,

where P gen
t,n is the power generated at the node

at time t, P dem
t,n is the power demand at time t,

the summation term represents the net power in-
flow of lines connected to the node n, and ζt,n
represents the demand-supply gap, i.e. the load
shedding.

2.1.7. Security constraints

To ensure reliability under contingencies, N-1 se-
curity constraints are incorporated, ensuring that
the system can operate safely even with the failure
of a single component. These constraints adjust
line flows and generator outputs under contin-
gency scenarios C. For this, we include a set of
security constraints defined as hc(X) ≤ 0, which
include capacity constraints on the transmission
lines and power balance equations for all c ∈ C.

3. The proposed CVaR-SCOP

formulation

The CVaR-SCOP formulation extends the deter-
ministic SCOP by integrating a risk metric based
on the concept of Conditional Value at Risk
(CVaR) into the objective function to account for
demand uncertainty and operational risk. By eval-
uating performance across S demand scenarios,
the approach ensures robust solutions that mini-
mize costs while penalizing demand-supply mis-
matches (load shedding). The CVaR component
addresses the tail risks associated with extreme
demand variations.

3.1. Objective function

The objective function incorporates the expected
costs and the CVaR-based metric to penalize sce-
narios with significant load shedding. The CVaR
threshold level, defined as ζt,b under normal op-
erational conditions, is treated as a Value at Risk
(VaR) level:

min
X,η,ζ

J(X) +
∑
t,b

(
ζt,b +

1

αN

S∑
i=1

η
(i)
t,b

)
,

s.t. η(i)t,b ≥ δ
(i)
t,b − ζt,b, ∀i = 1, . . . , S, ∀t, b,

η
(i)
t,b ≥ 0, ∀i = 1, . . . , S, ∀t, b.

Where J(X) is the original objective function
for a nominal demand scenario, ζt,b is the value-
at-risk under nominal conditions, and η

(i)
t,b are aux-

iliary variables that quantify excess costs beyond
ζt,b for scenario i. The parameter α ∈ [0, 1]

represents the risk aversion parameter, with lower
values prioritizing risk aversion. Additionally, S
denotes the number of demand scenarios. It is
important to note that the constraints imposed on
the original det-SCOP are also applied to this risk-
averse formulation, but these are omitted here for
the sake of simplicity. One should also note that,
by defining the risk metric using the demand-
supply gap ζt,b as a representation of the value-
at-risk, we ensure that the risk is computed with
respect to the nominal conditions. However, this
approach does not allow for insights on the of
the tail’s actual probability mass. Drawbacks and
benefits of this choice will be analyzed in future
extensions.

3.2. Demand uncertainty

Demand uncertainty is represented by P
d,(i)
t,b ∼

Fd, where Fd is a probabilistic demand model for
the load consumption at all nodes and planning
time steps, assumed available for analysis sake.
For each scenario with superscript (i), nodal bal-
ance equations are re-computed as follows:

P gen
t,b − P

d,(i)
t,b −

∑
k∈N

(
ft,(k,b),n − ft,(b,k),n

)
= −δ

(i
t,

where δ ∈ R
+,nB×nT×N represents the nodal

supply-demand mismatch during contingencies.
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4. Case study

The IEEE 24-RTS system is used to evaluate the
proposed det-SCOP and CVaR-SCOP approaches
under realistic operational conditions. The system
comprises nL = 33 transmission lines (plus 5
transformers). There are nG = 10 generators and
17 non-zero load nodes, distributed over nB = 24

buses. The hourly demand data for this test case
are sourced from Subcommittee (1979), which is
re-scaled by the selected step size of the planning
horizon by taking the maximum load within the
consecutive steps. The planning horizon consists
of nt = 365 daily time steps, corresponding to a
one-year period.

Concerning the PM activities, the planned out-
age set denoted by O consists of no = 8 compo-
nents: two generators and six transmission lines.
The line indices considered are [0, 1, 2, 3, 5,
8], while the generator indices are [1, 2]. The
expected duration of the PM activities varies sig-
nificantly, ranging from 7 days to 60 days, with
specific durations do set as [25, 7, 55, 7, 30, 30,
30, 60] (the last two terms are for the generators).
Each PM activity is also assigned a priority score
ρo, with values [1, 2, 1, 3, 2, 1, 1, 3], indicating
that line 3 and generator 2 have the highest prior-
ity, followed by line 1 and line 5. The maximum
number of simultaneous PM activities is set to
mt = 2 for all time steps.

The contingency set, C, includes the first 30
N − 1 single-line failures, ensuring robust sched-
ules in the face of operational disruptions. To
account for variability in demand, S = 10 load
samples are generated for each node and time step
and the value of lost load, representing the cost of
demand-supply gaps, is set to 106 monetary units
[m.u./MWh]. The generator costs are assumed sta-
tionary and set to a unitary cost (wg = 1) for all
generators.

This configuration provides a comprehensive
basis for comparing the det-SCOP and the CVaR-
SCOP approaches, emphasizing their effective-
ness in managing maintenance scheduling while
addressing risk sensitivity and operational con-

straints.

5. Results and comparison

This section presents a set of preliminary results
that serve as an initial validation of the pro-
posed approach. While these results are still in
the early stages of analysis, they provide valuable
insights into the effectiveness and potential of the
methodology. It is important to emphasize that
these findings, though preliminary, are important
to establish a foundation for further investigation.
In addition, they highlight the feasibility of the
proposed approach and set the stage for more
comprehensive evaluations in subsequent phases
of the study.

5.1. Outage schedule

Figure 1 provides a side-by-side comparison of
the schedules generated by the det-SCOP and
CVaR-SCOP approaches for eight PM activities.
The figure is divided into eight subpanels, each
representing the binary variable xt,o, which indi-
cates whether a specific PM activity is scheduled
at a given time. Solid lines represent the det-SCOP
schedule, while dashed lines correspond to the
CVaR-SCOP results, emphasizing the differences
that arise from incorporating risk-awareness into
the planning process.

It should be noted that the scheduling results
for the PM activities differ between the two ap-
proaches. This divergence highlights the impact
of considering risk through the proposed CVaR
approach. However, the underlying reasons for
these differences are not immediately apparent,
and a more detailed analysis is necessary in order
to provide better insight into how risk-awareness
influences the scheduling decisions.

Future work will focus on extending this analy-
sis by incorporating a more detailed examination
of the risks and trade-offs associated with each
approach. Such an investigation will shed light on
the observed differences and provide more details
on the advantages of the proposed CVaR-informed
methodology.
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5.2. Line flows

Figure 2 presents a comparison between the ex-
pected line flows for the first 15 lines using both
the deterministic SCOP (det-SCOP) and CVaR-
informed SCOP (CVar-SCOP) methods. The anal-
ysis of the line flows reveals how the inclusion
of risk awareness in the CVaR-SCOP formulation
influences the scheduling and flow distribution
across the network. While the det-SCOP method
tends to follow a more flat pattern, the CVar-SCOP
method adjusts the flows to account for the uncer-
tainties, resulting in a more variable flow pattern.
This adjustment probably aims to mitigate the

Fig. 1. A comparison between the 8 planned outages
scheduled using det-SCOP and CVar-SCOP.

impact of potential high-cost scenarios, leading to
a more resilient system.

Fig. 2. A comparison between the expected line flows
on the first 15 lines as for the det-SCOP and CVar-
SCOP methods.

5.3. Time-varying aggregated risk
distribution

Figure 3 illustrates the trend in the total CVaR-
based metric over time, which is the sum of CVaR-
based metric values over all nodes and time steps.
As seen in the figure, the total risk closely follows
the load profile, indicating that the highest risk
occurs during periods of high demand. This corre-
lation suggests that the system is more vulnerable
during peak load periods, which underscores the
importance of incorporating risk measures into the
planning process to ensure reliability during these
critical times.

5.4. Nodal risk distribution

Figures 4 and 5 present the risk distribution across
the network nodes. The first figure shows the
PDFs of the CVaR-based metric values for nine
load busses at each time step. These densities il-
lustrate how the risk is distributed across different
parts of the network, with higher values indicat-
ing more significant risk exposure at certain load
busses (the different magnitudes on the x-axis).
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The second figure presents the empirical CDFs
of CVaR-based metric values, aggregated over all
nodes in the system. The CDFs provide insight
into the overall risk exposure of the system as well
as each node, helping to identify the nodes most
susceptible to high-risk events. By comparing the
two figures, we can observe the varying risk levels
at different locations in the network, which are
influenced by both the load patterns and the net-
work’s topological structure.

6. Discussion, conclusions, and prospects

This paper investigated deterministic security-
constrained outage planning (SCOP) and CVaR-
informed SCOP methods. We compared the two
approaches and their resulting maintenance sched-
ules using the IEEE 24 RTS system. The evalua-
tion of risk distributions highlights how incorpo-
rating risk awareness enhances resilience in power
system planning. The presented figures illustrate
some of the key findings and their implications
for future optimization and risk management in
power systems. Specifically, the risk-informed ap-
proach has demonstrated its ability to provide so-
lutions that account for risks and uncertainties by
implementing a modified operational plan, such
as adjusted outage scheduling and more flexible
load flow profiles. While these preliminary results

Fig. 3. Trend in the total CvaR-based metric over
time (summation over all nodes for all time steps).
One should note that it is correlated with the total load
profile.

highlight the promising effect of a risk-informed
approach, the extent of its effectiveness and ro-
bustness needs to be evaluated in more detail.

Future work will extend this research by incor-
porating power flow equations to better capture
operational constraints, exploring trade-offs be-
tween risk reduction and maintenance costs, and
developing advanced data generation methods to
model uncertainties in demand, production, out-
age durations, and unplanned contingencies. Ad-

Fig. 4. Densities of CVaR values for t ∈ T estimated
from the samples on nine load busses.

Fig. 5. Empirical CDFs of CVaR-based metric values
for t ∈ T estimated from the S samples on all busses.
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ditionally, we will implement efficient numerical
techniques to scale the framework for application
to larger, national-level systems. These improve-
ments aim to enhance the practicality and scala-
bility of risk-aware power system optimization.
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