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The digitalization of the economy in the past decades has made data availability grow and become more important.
Consequently, in the field of maintenance, in recent years, different jargons appeared, among which prescriptive
maintenance has gained remarkable popularity. In this prescriptive maintenance study, we introduce the notion of
degradation management to one of the most important combinatorial optimization problems, the vehicle routing
problem. A fleet of vehicles has a set of points to visit each day. Each of those points has known deadlines.
Additionally, vehicles are subjected to degradation and a stochastic state of health evolves with the distance traveled.
Finding the best order of points to visit requires the solution method to account for the long-term degradation, since
solving for each day independently in the way that most logistic operations are currently done, can lead to suboptimal
solutions and increases the risk of downtime. Here, this optimization problem is stated using a Multi-Integer Linear
Programming (MILP) formalism. We also provide numerical experiments, solving it and discussing the implications
of considering degradation while optimizing the exploitation of vehicles. In conclusion, our solution proposal can
reduce breakdown and maintenance costs.

Keywords: Vehicle routing problem, maintenance, decision-making, numerical optimization, degradation and relia-
bility models.

1. Introduction

With new technologies, the popularization of sen-
sors and the wide adoption of data-centric solu-
tions, the field of maintenance has witnessed rel-
evant conceptual discussions around ways of cre-
ating new policies. In this context, the term Pre-
scriptive Maintenance (PsM) appeared Longhi-
tano (2024). However, despite its relative popular-
ity, the most common definitions of PsM Ansari
et al. (2019) are not successful in differentiating
it from classical maintenance practices, especially
predictive ones.

In this paper, PsM conveys the notion of a
policy based on decision-making algorithms that
minimize a metric related to the overall exploita-
tion cost of the system through actions that affect
all system functions Longhitano (2024). In partic-
ular, this paper addresses heavy vehicles routing
optimization.

Heavy vehicles are crucial for logistics and op-
timizing their usage is important both from a fi-
nancial and environmental point of view. As such,
the problem of how to assign missions to vehi-
cles is a classic combinatorial problem first intro-
duced by Dantzig and Ramser (1959) and popu-
larly known today as the Vehicle Routing Problem
(VRP). Several versions of the VRP exist and, for
a systematic review of the most classic variations,
we refer to Toth and Vigo (2002). Although the
literature on VRPs is vast, there have been only
few attempts to include vehicle maintenance in it,
among which are Robert et al. (2019); Jbili et al.
(2018); Longhitano et al. (2021).

In Robert et al. (2019), authors address vehicle
assignment and maintenance operation schedule
in the same optimization problem, representing
vehicle health as a stochastic quantity. However,
authors do not consider the spatial dimension of
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the problem and they treat fleet management as a
scheduling problem instead of a proper VRP.

In Jbili et al. (2018) authors formalize their
problem as VRP variation and jointly optimize
routing and maintenance planning. However, de-
spite the quality of their work, since they do not
address degradation management, optimizing sce-
narios with neglectable failure probabilities would
yield the same solution as classical VRPs. This
undermines the long-term nature of combining
maintenance and vehicle exploitation decisions,
since they always have an impact on vehicle health
or degradation.

In Longhitano et al. (2021), the spatial dimen-
sion of the VRP and degradation management are
considered, but the problem formulation is not
capable of ensuring optimality in long-term ap-
plications due to its overly simplistic optimization
model. In this paper, this contribution is improved
with a new optimization formulation that is more
robust and realistic. It optimizes maintenance and
route decisions in a finite time horizon reducing
the overall exploitation cost of managing a fleet of
heavy vehicles.

2. Problem Formulation

2.1. Degradation Model

The first step to include degradation into a VRP is
to define a degradation model capable of connect-
ing routes to vehicle health evolution. For that, we
use a first-hitting-time approach in which a health
indicator W (d) evolves with traveled distance
d. Failure occurs at Dfail, when this indicator
crosses a threshold wcrit.

Dfail = inf{d : W (d) ≥ wcrit | W (0) ≤ wcrit}
(1)

It is common to model vehicle component
degradation by a Wiener process Yan et al. (2022);
Guérin et al. (2010), therefore the following
degradation model is used:

W (d) = W0 + λd+ σbB(d) (2)

where W represents the component health in-
dicator, d is the traveled distance, W0, λ and σb

are constants and B(d) is the standard Brownian
motion. Those parameters can be estimated di-
rectly through data, using, for example, maximum
likelihood techniques such as in Tang et al. (2014).

2.2. Optimization model

The proposed degradation model, although sim-
ple, correlates degradation to traveled distance and
therefore can be used to connect classical main-
tenance actions and routing. Routing and main-
tenance have an interconnected nature. Sending
vehicles that are more degraded to do less severe
missions can postpone maintenance operations.
The PsM problem becomes defining mission plans
and choosing maintenance dates in a way that this
relationship is exploited to reduce long-term costs.
The assumptions are:

• Long-term optimization happens over a finite
time horizon H , composed of different working
sessions t.

• At each working session t, a set of missions
must be performed. Each mission can be seen
as a delivery with a known address and dead-
line. All relevant addresses are represented by
a graph Gt = (Nt, Et) with Nt = Ct ∪ 0.
Ct represent mission addresses while 0 is the
headquarters, where vehicles start and to where
they must return by the end of t. The edges
Et represent the shortest paths between those
addresses.

• The set of mission addresses does not change
during a working session.

• Each vehicle in the fleet, represented by a set Z,
has constant known degradation parameters λz

and σz .
• Maintenance is treated in an opportunistic set-

up. It can only take place after specific working
sessions which define a set V of maintenance
opportunities with V ⊂ H .

• Each maintenance operation takes the compo-
nent back to an as good as new state.

Figure 1 represents this decision-making prob-
lem which comes down to minimizing the ex-
ploitation cost over H . However, every routing
process must be made ensuring that operational
constraints such as mission deadlines, are re-
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Fig. 1. Visual representation of the problem statement. At each working session, a graph Gt is used to define
routes, as explicitly shown for t1 and t5. In this case, V = [7], meaning maintenance operations can occur between
t7 and t8.

spected. Furthermore, it is also important to keep
failure probabilities under a maximum acceptable
threshold to avoid downtime.

To transform the aforementioned assumptions
into an optimization model, the traditional MILP
approach is used. We start by defining the follow-
ing decision variables:

xtzij =

⎧⎪⎪⎨
⎪⎪⎩

1, if vehicle z goes from node i to
node j with i, j ∈ Nt, z ∈ Z

and t ∈ H
0 otherwise

(3)

mvz =

⎧⎪⎪⎨
⎪⎪⎩

1, if vehicle z performs mainte-
nance at v with v ∈ V and
z ∈ Z

0 otherwise
(4)

The cost function of the optimization problem
becomes:

minCpsm =
∑
t∈H

∑
z∈Z

∑
j∈Nt

∑
i∈Nt

ckmxtzijdtij

+
∑
v∈V

∑
z∈Z

cmaintmvz

(5)

where ckm is a constant related to the fuel
cost and average fuel consumption while dtij is
the distance between each node i and j ∈ Nt.

cmaint is the cost of preventive maintenance op-
erations. In order to obtain solutions that represent
valid routes, xtzij must respect classical VRP con-
straints in each working session:

∑
z∈Z

∑
j∈Nt

xtzij = 1

∀i ∈ Nt − {0}, t ∈ H (6)∑
i∈N

xtzij −
∑
i∈Nt

xtzji = 0

∀i ∈ Nt, z ∈ Z, t ∈ H (7)∑
t∈H

∑
z∈Z

∑
j∈Ct

xtz0j ≤ |Z|

∀i ∈ Nt − {0}, t ∈ H (8)

xtijz ∈ {0, 1} (9)

mtz ∈ {0, 1} (10)

Constraint 6 ensures that every mission address
is visited once. Constraint 7 ensures flux continu-
ity and constraint 8 limits the number of vehicles
used to the fleet size. Constraints 9 and 10 deter-
mine decision variables support. However, those
constraints are not sufficient since they do not
guarantee solutions without sub-tours and do not
address operational constraints. Both problems
can be fixed by adding decision variables ytzij
in the formulation. They are continuous variables
representing the arrival time of vehicle z at node
j coming from node i in a working session t. The
following constraints are then required:
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∑
j∈Nt

ytzij −
∑
j∈Nt

ytzji ≥ Δytijxtzji

∀i ∈ Nt, ∀z ∈ Z∀t ∈ H

(11)

ytzij ≥ t0jxtz0j ∀j ∈ Nt∀z ∈ Z

(12)

ytzij ≤ lj ∀i ∈ Nt, j ∈ Nt, z ∈ Z, t ∈ H

(13)

ytzij ∈ [0,∞[

(14)

with Δytij representing the time necessary to
go from node i to j at t ∀i, j ∈ Nt and t ∈
H . Constraint 11 makes ytzij coherent with dis-
placements duration when xtzji = 1 and force
them to 0 otherwise. It also acts as a sub-tour
elimination constraint. Constraint 12 establishes
the first arrival time of each vehicle while 13
ensures that mission deadlines - represented by lj
- are respected. Constraint 14 defines the correct
support for variables ytzij .

Including constraints on the failure probability
directly through the correspondent cumulative dis-
tribution function is inconvenient. It would intro-
duce non-linearities that would needlessly com-
plicate the model from a computational point of
view. It is possible to limit failure probabilities
indirectly through the quantiles of Dfail. For ex-
ample, imposing an acceptable failure probability
q, is equivalent to limiting traveled distances to
Dq

max where:

Dq
max = d : P (Dfail ≤ d) = q (15)

Therefore, acceptable failure probabilities can
be guaranteed by ensuring that, between every
maintenance operation, vehicle z does not travel
more than Dmaxz . This is achieved by introducing
decision variables Dvz∀v ∈ V, z ∈ Z and the fol-
lowing constraint, referred to as safety constraint:

Dvz +
t∑
v

∑
i∈Nt

∑
j∈Nt

xtzjidtij ≤ Dmaxz

∀v ∈ V, t > v (16)

In order for Constraint 16 to work as intended,
it is necessary that Dvz = 0 if a replace-
ment happens at v or that Dvz = Dv−1z +∑t−1

v−1

∑
j∈Nt

∑
i∈Nt

xtzjidtij , otherwise. This
conditional logic is achieved through the follow-
ing constraints:

Dvz ≥ Dv−1z +
v−1∑
t−1

∑
j∈Nt

∑
i∈Nt

xtzjidtij

− mtz ∗K ∀v, v − 1 ∈ V z ∈ Z (17)

D0z = 0 ∀z ∈ Z (18)

Dvz ∈ [0,∞] (19)

Constraint 19 establishes the support for Dvz .
Constraint 17 is used to establish the conditional
logic previously discussed. If constant K is large
enough and a maintenance operation is performed
at t, the right hand side of the inequality becomes
negative, forcing Dvz to zero. Otherwise, Dvz

becomes the accumulated distance until the last
maintenance opportunity. It is also necessary to
add t = 0 to the set V so that constraint 17 can
be computed at the first maintenance opportunity.
Additionally, it is required that D0z = 0 ∀z ∈ Z

which is guaranteed by Constraint 18. Constraint
19 defines the range of Dtz .

This formulation leads to a method for com-
bining maintenance and routes, reducing long-
term costs. Since this MILP is linear, classical
branch and bound methods can be used to solve it.
Through a set of numerical experiments, different
aspects of this formulation are shown, discussing
its characteristics and potential benefits.

3. Numerical experiments

3.1. Simulation set-up and benchmark
model

Due to the randomness of the degradation process,
to empirically validate our proposal, we perform
numerical simulations. In those simulations, two
fleets of vehicles will carry out the exact same
missions for the same time horizon H . Graphs
Gt are obtained by randomly sampling 10 mis-
sion addresses from an uniform distribution on
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a 400x400 square km and dtij are computed as
the Euclidian distance between each node in Nt.
In each working session the headquarters (indi-
cated by 0) position is the same, with coordinates
[200,200]. Deadlines were set guaranteeing that,
at each working session, there is at least a feasible
route.

The first fleet will take decisions on main-
tenance and routes by solving the optimization
model presented in Section 2.2. The second fleet
is a benchmark model representing real-life prac-
tices for deciding maintenance and routes. Routes
are assigned to vehicles, at each working session
t, according to the following more classical VRP
that does not take into account the degradation:

min
∑
z∈Z

∑
j∈Nt

∑
i∈Nt

ckmdtijxtzji (20)

Subjected to:

∑
z∈Z

∑
j∈Ct

xtzij = 1

∀i ∈ Nt − {0} (21)

∑
i∈Nt

xtzij −
∑
i∈Nt

xtzji = 0

∀j ∈ Nt, z ∈ Z (22)

∑
z∈Z

∑
j∈Ct

xz0j ≤ |Z| ∀i ∈ Nt − {0} (23)

xtijz ∈ {0, 1} (24)

∑
j∈N

ytzij −
∑
j∈Nt

ytzji ≥ Δytijxtzji

∀i ∈ Nt, ∀z ∈ Z∀t ∈ H (25)

yt0jz ≥ t0jxtz0j ∀j ∈ Nt∀z ∈ Z (26)

ytijz ≤ lj

∀i ∈ Nt, j ∈ Nt, z ∈ Z, t ∈ H (27)

ytijz ∈ [0,∞[ (28)

and for maintenance, a simple strategy emu-
lating preventive maintenance policies is applied.
For each v ∈ V , components are replaced if

a vehicle has traveled more than a predefined
threshold distance Dbenchmark. This threshold is
defined in such a way that it mimics the order of
magnitude of real preventive maintenance inter-
vals.

Once routes and maintenance dates are estab-
lished they are simulated. For each simulation,
if, at any point Wz exceeds wcrit, a failure is
considered to happen. In the next working session,
degradation returns to a good as new state, as a
consequence of a corrective operation. The cost is
assessed for the simulated histories as:

Csimu =
∑
t∈H

∑
z∈Z

∑
j∈Nt

∑
i∈Nt

ckmxtzjidtij

+ cfailnfail + cmaintnmaint (29)

where cfail is a constant representing the mon-
etary value of a failure, nfail is the number of
failures occurred and nmaint the number of main-
tenance operations performed. For all simulations,
cost constants are ckm = 0.4, cmaint = 100 and
cfail = 2000.

Maximum acceptable failure probabilities qmax

are defined by:

qmax =
cmaint

cfail
= 5% (30)

as a thumb rule to achieve reasonable failure costs.
The degradation model parameters are chosen

so that the component must be replaced several
times throughout the life of the vehicle, forcing
this PsM solution to address the routing and main-
tenance decisions together.

3.2. Results
3.2.1. Experiment 1: Homogeneous fleet

In the first numerical experiment, we consider
a homogeneous fleet with parameters described
in Table 1. We also have, V = ∅ and H =
[0, 1, ..., 19], i.e: no maintenance opportunities
and a horizon of 20 working sessions.

Table 1. Fleet parameters for experiment 1

Vehicle λ σB W0

0 0.002 0.1 0
1 0.002 0.1 0
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Results are shown in Table 2. In this experi-
ment, both models use exactly the same routes.
This happens because in such a short horizon H ,
safety constraints could be easily respected and
both models minimized the total traveled distance.
As failure probabilities were negligible, the em-
pirical costs obtained were also the same. As ex-
pected, like the benchmark model, the PsM model
minimizes fuel consumption costs when failure
probabilities are not significant. A second exper-
iment is performed to highlight the differences
between both models in a heterogeneous fleet.

Table 2. Simulation result of experiment 1

Consumption
cost

C̄simu

PsM 10583.5 10583.5
Benchmark 10583.5 10583.5

3.2.2. Experiment 2: Heterogeneous fleet

To address a case in which both models behave
differently, a second experiment is performed with
H = [0, 1, ..., 35] and a fleet with parameters shown
in Table 3. This fleet is heterogeneous, since Vehi-
cle 1 has a grater σ. This corresponds to a greater
degradation variance, leading to a lower Dq=5%

max .
With more restrictive safety constraints and a
longer horizon, routing strategies were different in
some working sessions. Figure 2 shows the routes
used by both models in those cases.

The routes used by the PsM model are subop-
timal from the point of view of fuel consumption,
since they do not minimize the total traveled dis-
tance. However, these routes allow feasible so-
lutions in terms of safety constraints, making it
possible for Vehicle 1 to travel less than Dmax1

and limiting the probabilities of failure under 5%.
Consequently, although the consumption cost of
the solution found by the PsM is higher,the cost
observed in the simulation is considerably lower
since failures occurred more often with the bench-
mark model. The results are given in Table 4.

3.2.3. Experiment 3: Maintenance decision

The two models also behave differently in terms
of maintenance management. In the following nu-

Table 3. Fleet parameters for experiment 2.

Vehicle λ σB W0

0 0.002 0.1 0
1 0.002 0.5 0

merical experiment, the fleet used is presented in
Table 5. It has smaller λ values when compared
to the previous fleets used. As a consequence, it
allows for longer horizons in which decisions on
maintenance become relevant. To illustrate this,
four instances of the problem with the same set
Gt and a horizon H = [0, 1...70] are solved. In
the first instance, V = ∅ i.e. maintenance is not
allowed. In the second, third and fourth instances,
maintenance opportunities occur at V = [20],
V = [50], V = [68], respectively. The results are
shown in Table 6.

The results in Instance 1 show that there is a
feasible solution in which respecting safety con-
straints is possible. As in previous examples, the
PsM model is capable of limiting failure proba-
bilities by using sub-optimal routes, reducing fail-
ure costs. In Instance 2, a maintenance opportu-
nity is available at the beginning of the horizon.
Since the vehicles had not yet traveled more than
Dbenchmark, no maintenance is performed by the
benchmark model, leading to significant failure
costs. On the other hand, the PsM model performs
a maintenance operation on Vehicle 1, which al-
lows it to take shorter routes when compared to in-
stance 1, reducing consumption costs. In Instance
3, the benchmark model chooses maintenance op-
erations for both vehicles, since it makes decisions
purely based on traveled distance. The PsM model
performs maintenance only for Vehicle 1. As a
maintenance opportunity was available in the mid-
dle of the horizon, it was possible to take only
optimal routes on this instance and both models
achieved the same consumption cost. Finally, in
Instance 4, maintenance opportunities were at the
end of H . The benchmark model replaced both
components, however, the PsM model did not
perform a maintenance operation. Since the main-
tenance opportunity only occurred at the end of
H , savings in fuel consumption due to the possi-
bility of choosing better routes afterwards did not
compensate for the extra maintenance operation.
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Fig. 2. Working sessions in which routes used by each model were different. Notice that the PsM model chooses
routes that allow Vehicle 1 (represented in blue) to travel shorter distances and respect its safety constraints.

Table 4. Simulation result of experiment 2. Columns Dvh0
total and Dvh1

total represent the total
traveled distance for Vehicle 1 and 0 respectively.

Dvh0
total Dvh1

total
Consumption

cost
C̄simu

PsM model 33619.5 7693.4 16525.4 16670.6
Benchmark model 22297.3 18980.4 16511.1 16788.7

Table 5. Fleet parameters for experiment 3

Vehicle λ σB W0

0 0.0005 0.1 0
1 0.0005 0.5 0

4. Conclusion

In this paper, a PsM application was developed. It
combines the usage and maintenance decision for
heavy vehicles by extending the VRPs with the
notion of degradation management. This allows
vehicles to be allocated effectively, not only from
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Table 6. Simulation result of experiment 3

Instance PsM model Benchmark model
Consump.

cost
Maint.

cost
Failure

cost
Consump.

cost
Maint.

cost
Failure

cost
1 35884 0 191 35498.8 0 641
2 35679 100 207 35498.8 0 652
3 35498.8 100 217 35498.8 200 241
4 35884 0 211 35498.8 200 619

a fuel consumption point of view but also reducing
downtime and breakdown costs in heterogeneous
fleets. Through a series of experiments, it was
shown that our proposition yields better results
when compared to traditional approaches, which
were represented by a benchmark model.

In future publications, we would like to address
more complex degradation phenomena where,
for example, multi components reliability models
could be used, representing the different systems
of a vehicle. It would also be interesting to relax
some of the hypothesis made and consider more
complex variations of VRPs as a basis. For exam-
ple, in future works we could allow for new mis-
sions to arrive during working sessions, leading to
a dynamic VRP.

Furthermore, for a PsM solution to be com-
plete, it is important to ”close the decision loop”
by collecting degradation data periodically and
reducing the variance of the performance of the
solutions. Finally, a very interesting research path
is to develop algorithms that are efficient for this
new optimization problem.
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