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Hydropower infrastructure globally faces three primary challenges: aging infrastructure, climate change, and hydro-
peaking. These issues result in increased degradation rates, with a higher degree of associated unpredictability. This
preliminary research aims to identify a modeling approach that would inform an optimized maintenance plan within
a host organization, to aid in ensuring the availability and good operation of hydropower assets, while balancing
strategic production objectives with risks. The methodology for modeling the asset degradation phenomena must
leverage how degradation mechanisms evolved historically for critical assets, considering condition monitoring
data over time, to recognize trends in their health state and thus optimizing maintenance interventions, minimizing
production losses. The work presented in this paper describes an investigation of the existing data and its sources,
including experts’ feedback, within the host enterprise, a review of the literature on dynamic modeling and the
monitoring of degradation mechanisms, and an evaluation of potential degradation modeling methods that could be
applied to two distinct assets that were selected as case studies: the spillway gate and the alternator. It is proposed
that a model based upon a Bayesian Stochastic Petri Net (BSPN) would meet the desired criteria for a degradation
model for asset management, allowing for refinement and adaptation over time as more data becomes available and
as variable degradation drivers continue to evolve.
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1. Introduction average, while accounting for 35 percent of the

The Compagnie Nationale du Rhone (CNR) is tota% energy produ.c.tl.on, according t0.20.19 figures.
. . Typically, HP facilities are decommissioned after

responsible for managing the hydropower (HP)

infrastructure on the Rhone River in France. As 60 years on average, though some may operate

France’s largest producer of fully renewable en- past ,100 (IRENA, 2023)', .
ergy, it faces challenges common to the HP in- Climate change has disrupted river flows, re-

R . ducing HP output and increasing the prevalence
dustry: aging infrastructure, climate change, and
hydropeaking. Much of their infrastructure is dis- O.f fsxtreme,fioods (CNB’ %019)’ (RTE, 2922)' Ad_
playing age-related degradation. Typically, the ditionally, “hydropeaking”, used to stabilize grids

highest-yield projects are developed first. Thus, with increasing wind and solar inputs, accelerates

the oldest facilities are also the most productive, wear on certain assets due FO start and stop cycles
exacerbating the risks associated with aging. CNR (Solvang et al., 2009), (Savin, 2022). Together at a
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on average 73.7 years old, close to twice the global constraining maintenance budgets, more focus 1s
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being put on optimising the asset management
(AM) and maintenance decision-making (MDM)
processes. Generally, classical reliability analy-
sis techniques are used to derive metrics such
as remaining useful life (RUL) to inform AM
and MDM. These rely upon robust lifetime data,
while assuming that the environmental influences
are constant. In the HP industry however, this is
typically not the case.

Assets are designed to be highly reliable and
rarely allowed to reach failure due to the as-
sociated costs, resulting in sparse lifetime data
(Si et al., 2011). Historically, record keeping has
lacked formalisation and digitisation, further com-
plicating the use of the data that does exist. Ac-
celerated life testing is rarely used in the industry
due to the expense (Welte, 2008). When it is, the
methods do not necessarily imitate the true failure
mechanisms (Nikulin et al., 2010).

As such, often predictive degradation mod-
elling (PDM) techniques are preferred to derive
reliability metrics to inform MDM (Sapkota et al.,
2022), (Asnes etal., 2018). PDM’s may take many
forms and be continuous or state-based. They
predict the degradation trajectory based upon the
evolution of measurable degradation indicators
such as cracking, erosion, or deformation, or use
signals derived from condition monitoring data
(Yildirim et al., 2019), (Ye and Xie, 2015). These
however present their own challenges. Signifi-
cant limitations exist in quantifying assets’ con-
dition (Welte, 2008). Regarding covariate influ-
ences, these relationships are rarely well under-
stood and often models mix causal relationships
(Si et al., 2011). Finally, difficulties and costs as-
sociated with collecting high quality degradation
data present modelling challenges (Zhou et al.,
2011). However, when this data does exist, PDM’s
can be used to make robust reliability inferences
due to the availability of quantitative measure-
ments on the state of the whole population, even
when lacking real failure data (Nikulin et al.,
2010).

The objective of this research is to identify
methods for improving CNR reliability analysis
capabilities, used to inform the MDM process, in
the context of the outlined industrial challenges

and an evolving data gathering and management
environment. The methods must account for sensi-
tivity to operating conditions, environmental fac-
tors, and imperfect maintenance. They should in-
tegrate data from condition monitoring, expert in-
put, and physical models where possible.

Based on this research, we conclude that a
methodology allowing the integration of different
sources of data and information into the degra-
dation modelling dynamics, such as enabled by a
BSPN method, would be suitable. This would aid
in tackling the issue of data deficiencies, and en-
able model adaptation over time, thus tackling the
described existing challenges. The approach ad-
dresses both technological and natural risks to aid
in informing a complex, multi-stakeholder deci-
sion process by optimally leveraging the available
data to predicatively model the asset degradation.
This is outlined in the context of two different use
cases with varying degrees of data availability.

The paper is structured as follows: Section 1
serves as an introduction to the problem and its
context, while outlining the research objectives;
Section 2 describes the analysis of the assets that
will be focused upon; Section 3 consists of a re-
view of the existing methods; Section 4 describes
the methodology selected and section five covers
the discussions and perspectives at this stage of
the research.

2. Analysis of Selected Assets

At this stage, two assets were selected for analy-
sis: the radial spillway gate and the turbine alter-
nator. The associated mechanical, hydraulic and
electrical characteristics provide a juxtaposition of
possible degradation phenomena to be considered.
Degradation mechanisms with suitable data and
behaviour for modelling were identified.

2.1. Spillway gate

Spillway gates control the discharge from dam
reservoirs, particularly during extreme flood
events. By releasing excess water during periods
of high discharge they ensure the reservoir ca-
pacity is not exceeded, or result in flooding up-
stream. This throttling can also dampen flooding
downstream, by reducing peak discharge and dis-
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sipating it over a longer period. They are designed
to handle long return-period floods, however, cli-
mate change has made them vulnerable to extreme
events that are increasingly common (Le Delliou
et al., 2013).

Their failure can have devastating conse-
quences, including damage to property, agricul-
tural land, and the environment, loss of life, and
in extreme cases catastrophic dam failure due to
exceeding the reservoir capacity inducing a loss
of structural stability and/or overtopping induced
erosion or scouring. As such, this system is es-
sential not only to HP but also flood management.
Mechanical installations in HP facilities, such as
spillway gates, have typical expected technical
service lives of 25 to 50 years and remain econom-
ically viable for 25 to 40 years (IRENA, 2023).

Failure corresponds to the gate being unable to
regulate discharge adequately. Due to the catas-
trophic consequences of failures, they are de-
signed with a high degree of redundancy. The
most significant source of risks identified include
improper maintenance, poor operation, extreme
flood events, as well as seismic events (Le Delliou
et al., 2013), (Faridmehr et al., 2020), (Shi et al.,
2023). The enigmatic fluid-induced vibration ef-
fect has also received significant attention in the
literature, with a few spillway gate failures having
been attributed to this phenomenon (Xu et al.,
2023), (Bower et al., 1994).

2.2. Alternator

Alternators are core components in power gener-
ation systems. In the HP context, they convert the
mechanical (potential and kinetic) energy of the
discharge harnessed by the turbine into electrical
energy. Here, the term alternator will refer to grid-
connected, 3-phase synchronous salient pole alter-
nating current generators associated with reaction
turbines. In this configuration, the turbine blade
rotation applies a torque to a shaft that spins a
rotor surrounded by a stationary armature coil,
the stator. The rotor is magnetized by the exciter,
inducing an alternating current in the stator which
is processed before being supplied to the electrical
grid (EN13306, 2001).

Two classes were considered: those associated
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with horizontal Bulb units and vertical Kaplan
units. Bulb units are more compact, with the tur-
bine and alternator being combined into a single
unit upstream of the impeller, while Kaplan units
have separate alternators (Thirriot, 1987). HP al-
ternators typically have technical service lives of
between 30 to 60 years, with economically viable
service lives between 25 to 40 years (IRENA,
2023).

Alternators have intricate and interdependent
components, with demanding operating condi-
tions in a harsh environment. This results in a high
prevalence of wear-out failures driven by extreme
vibrations and mechanical stresses, overloading,
part-load operation, start-up cycles, and high oper-
ating temperatures (Solvang et al., 2009), (IEEE,
2011). Their maintainability is inhibited by factors
such as their inaccessibility and the prohibitive
cost of downtime for preventative maintenance. It
is thus often preferable to limit maintenance and
inspections periodically to low production peri-
ods.

3. Review of existing methods,
approaches, and standards

A review of industry standards, the existing lit-
erature, and industrial practices was conducted.
Assets were analyzed as systems of components,
each affected by various degradation processes,
potentially leading to failure (IEEE, 2011). Mod-
elling can be used to predict failures to inform
MDM. In practice, modelling approaches are sim-
plifications of the real process. However, deci-
sion quality is limited by the suitability of ap-
proach, and thus it must be adequately represen-
tative (Rausand and Hgyland, 2004). MDM must
weigh the risks of failure against downtime losses
(Kumar and Saini, 2022).

3.1. Monitoring

CNR uses a four-level asset health rating system to
assess their condition on five dimensions: general
state, operation behavior, functional adaptation,
maintainability, and regulatory conformity. Static
and semi-static structures such as spillway gates
rely on visual inspections, which are limited by
subjectivity. Data takes the form of maintenance
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intervention logs, specifically renewal data. These
are used as an analogue to failure time data to
infer reliability metrics, although it is not true
failure time data and so the input and results
should be scrutinised. Data verification is also
vital due to factors such as data-age and sub-
jective interpretability of the logs. The dynamic
assets, such as turbine alternators, increasingly use
sensor data to track health state parameters like
temperature and vibration (Amadi-Echendu et al.,
2012). Compared with past trends in data, health
state parameters and predictions can be assessed
(Zhang et al., 2019), (Welte, 2008).

3.2. Modeling

Using a multi-dimensional health state definition
that characterizes failure modes beyond a simple
technical failure to inform MDM, the PDM must
then account for the factors influencing each di-
mension, beyond simply the technical state. Inte-
grated degradation models enable accounting for
multiple covariant influences simultaneously driv-
ing the health state evolution. Independent vari-
ables may include time, environmental conditions,
and performance indicators.

PDM’s are typically data-driven for complex
systems as the underlying degradation mecha-
nisms have multiple drivers, with poorly under-
stood relationships making mechanistic models
impractical (Savin, 2022). Hybrid models com-
bining elements of the two are possible, which
is desirable when a greater degree of certainty is
required (Stetter and Witczak, 2014). By defin-
ing observable states for the system, the random
evolution paths between the defined states can
be described with stochastic processes, when suf-
ficient data is available (Rausand and Hgyland,
2004). Several limitations exist for purely data-
driven methods however and as such, significant
care must be taken to ensure their validity (Si
etal., 2011).

4. Development: A Selected
Methodology

This section outlines the features of the chosen
PDM, for future development and implementation
as a tool to inform MDM within CNR. Considera-

tion was given to what condition monitoring data
was present in CNR, the input of experts, data
on the operating and environmental conditions
of the system, maintenance history, incident re-
ports, and other pertinent information to the degra-
dation mechanisms being investigated, including
the physical state of the system and components,
performance metrics, system maintainability, and
operating thresholds. These factors will be used to
inform characterizations of the global health state
of the system at a later stage of this research.

A first consideration was the identification of
the level of detail of interest. System-level anal-
yses with a top-down view are simpler to imple-
ment, but in complex electromechanical systems
they can have limited utility. Thus component
level, bottom-up approaches are often necessary.
As a first step, the effect of a single failure mech-
anism on a single component would be focused
upon. This has the efficiency advantage of en-
abling building complexity step-wise as neces-
sary. It may however present difficulties in propa-
gating the effects up to determine the system level
reliability, based upon PDMs for each component.

A further perspective was the ultimate use of the
model outputs. It is intended that the model would
eventually be used as an input to MDM models for
maintenance scenario evaluation and the develop-
ment of AM plans, for a portfolio of different fa-
cilities. As such, the result should be quantitative
and unambiguous, with the uncertainty as well
defined and understood as possible. It should also
be easily interpreted and accessible. It should thus
have the capacity to both accurately represent the
trend of the degradation processes on the global
health state and to predict the RUL distribution
for the system in the form of a prediction of the
time expected until an unacceptable health state
has been reached.

4.1. Spillway gate methodology analysis

The first step involves the component selection. To
inform this, a frequency analysis of the historical
maintenance logs for 85 radial spillway gates was
carried out to identify components subject to suit-
able degradation phenomena, that had a reason-
able base of data to work with and had a relatively

1313



1314

high level of criticality. The majority of gates are
decomposed into ten components, with some ex-
ceptions, resulting in 842 components considered.
The time range varies by component and facility,
with the log covering a period of 72 years from
1952 to 2024 inclusive. Based on the analysis, one
strong candidate is the gate seals. It was found
to have a short service life, a high frequency of
interventions overall, and a relatively high criti-
cality rating. It should be noted there is significant
subjectivity in the assessment of the state of this
component according to CNR’s experts and is not
well covered in the literature.

For the spillway gate, and by extension assets
of a similar nature, a survival analysis using a
probability density function (PDF), to model the
time to failure distributions, would be suitable
based upon the nature of the available data and
may be adequate to improve the existing main-
tenance planning. The PDF may be fitted to the
components that have failure data available or use
historical maintenance data as an analogue for the
observed lifetimes of the components. As a first
iteration, all spillway gates of the same type on the
Rhone would be assumed to be comparable, to en-
sure so far as possible the conditions are kept con-
stant while maintaining a statistically significant
population. Future research may seek to add a Cox
model to the PDF and identify a small number of
sub-classes for which individual covariates may
be applied. The PDF may be used to derive useful
statistics about the defined population which could
inform AM strategies and more optimally allocate
maintenance resources.

A possible choice may be a Weibull model,
which can be fitted using the shape and scale
parameters, determined using the maximum like-
lihood method. The more data that this is based
upon, the closer these two variables will cause the
trend to converge on the true values, if the data is
of high quality and genuinely representative. This
has been selected as an example on the basis that it
has been used successfully in similar applications,
although it has not yet been tested against other
models at this stage (Savin, 2022). For application
in the methodology, the PDF should be validated
against other distributions such as Gompertz, by
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comparing their AIC to determine the best fitting
solution, as although it is often the best adapted,
this is not always the case (Nikulin et al., 2010).

A Bayesian modeling framework could be de-
veloped to build on this, to create an integrated
model combining the outputs of the component
level models, updated in conjunction with expert
input and monitoring data as it becomes avail-
able. This may also incorporate the outputs of
physics-based material fatigue models, such as
crack propagation models, as have been developed
for similar applications (Mahmoud et al., 2018).
Bayesian statistics allows subjective observations
to be updated in a rational manner, as new obser-
vation data becomes available over time (Taleb-
Berrouane et al., 2020). This is particularly useful
here due to the reliance on maintenance data as
an analogue for service lives, in the absence of
“true” failure data, by aiding in quantifying the
uncertainty. This has also been shown to be very
effective method of improving the Weibull pa-
rameters (Nikulin et al., 2010). Furthermore, this
would enable the input of other sources of data,
in anticipation of the improvement of direct con-
dition monitoring for these assets and Bayesian
methods generally have been shown to be strong
at handling complex degradation models (Nikulin
et al., 2010).

4.2. Alternator methodology analysis

For the alternators, more comprehensive data sets
enabled a greater degree of granularity in the
analysis relative to the spillway gates. Many of
these components had their first intervention very
shortly after their initial installation. This may
be due to manufacturing defects that resulted in
infant mortality or other wear-in issues. The sta-
tors notably had a high frequency of maintenance,
close to double the interventions for the rotors.
When analyzed by component, the horizontal sta-
tor components in Bulb units, such as the stator
windings and magnetic circuits, received more
frequent maintenance than their vertical counter-
parts. This is possibly a result of the integrated
Bulb configuration motivating maintenance over-
lapping of different components to minimize long
term downtime losses and failure risks.
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For the alternators, and comparatively dynamic
assets, a similar approach would be developed
as proposed for the semi-static assets. However,
considering the existence of more extensive con-
dition monitoring data, more complexity can be
introduced from the outset. By defining global
asset health state ratings based on the existing
CNR health classification system, using expert as-
sessments and quantifiable degradation indicators,
a stochastic process model using Petri nets could
be developed to describe the progression of a
component or system through these discrete health
states. This would enable a more granular view of
the system than the binary state model proposed
for semi-static assets. Stochastic Petri Nets (SPN)
are an effective way of modeling the nature of this
phenomenon, while a Bayesian Stochastic Petri
Net (BSPN) would combine this capability with
the data updating capabilities of Bayesian updat-
ing (Taleb-Berrouane et al., 2020).

Due to its dynamic nature, there is greater
variance in its degradation evolution, with the
possibility of rapid deterioration. Understanding
these failure trajectories is necessary for their safe
and effective operation. Furthermore, this solu-
tion grants a few other useful capabilities. The
ability to update the model enables adaptation
to changes in the drivers of degradation and the
current global health state over time, to update
degradation trajectories predictions. Meanwhile,
the SPN provides a means to represent mainte-
nance interventions within the model, to reverse
the health states by varying degrees, depending on
the effectiveness of the intervention, which may
itself be imperfect and have associated uncertainty
(Chahrour et al., 2019), (Chahrour et al., 2021).

For the development of a BSPN for a single
component, the component health states would be
characterized as described previously. The transi-
tion firing probabilities between health states may
be represented using a suitable PDF, describing
its probability of transitioning to an advanced
degradation state, remaining in its current state, or
potentially undergoing maintenance, as a function
of time. The specific selection requires further
data analysis, validation, and expert opinion, with
the selected distributions chosen based on the fit

of available operating data, which may be updated
over time as more data becomes available.

The triggering of transitions to maintenance
interventions would be determined by maintain-
ability data with factors including the availability
of manpower and replacement components. Main-
tenance is treated as imperfect. The intention is to
return the system to a state virtually, ’as-good-as-
new”. However, this is not always accomplished
in practice. There is a probability that preventive
maintenance may be completely unsuccessful, re-
sulting in no change in the health state, while
corrective maintenance, such as replacement, will
always improve the health state. The probability
of success for each maintenance intervention type
could also be represented by a PDF based on
maintenance data and updated with expert opin-
ion, as well as new monitoring data as it becomes
available.

The incorporation of the binary Bayesian net-
work to the SPN would be carried out as described
in (Taleb-Berrouane et al., 2020). As the system’s
health evolution is described stochastically, using
discreet states, a Monte Carlo simulation could be
used to create large data sets, from which statisti-
cal information regarding the overall distribution
of the results can be derived for the development
of maintenance scenarios and AM planning.

5. Discussions and perspectives

The selected BSPN methodology meets the prede-
fined criteria and theoretically has the capacity to
adapt predictions both in the short term, through
Bayesian updating of health states, and in the
long term, by accounting for evolving degrada-
tion drivers such as aging, climate change, op-
erating policies, and maintenance interventions,
based upon its application in other contexts. Fu-
ture research will focus on developing and testing
this methodology, starting with a meta-analysis of
existing data, and defining objective health state
characterizations and indicators.

Currently, a significant limitation in CNR to-
wards the development of a model using this
methodology is in the identification of quantitative
measures that can be used to define objectively
the health states to represent the degree of degra-
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dation, as currently this process lacks formalism.
Ongoing research to this affect is underway within
the company.

A validation plan for the methodology after
its development will involve the comparison of
its predictive performance with those made by a
digital twin simulation of the assets, emulating
the conditions. Based upon the results of this, it
may be implemented on a localised scale, perhaps
in a single facility for a defined set of assets,
to compare in parallel its predictions with in-situ
conditions. An aim of the selected methodology
was that it would have broad applicability due
to the need to work for various HP facilities un-
der CNR’s remit. The selected methodology is
expected to accomplish this due to its basis in
fundamentally robust statistical principals and its
adaptive nature, although this can not be stated
definitively at this stage prior to validation.

Handling imperfect information, either from
sensors or experts, is a key challenge. The inno-
vation here is in the implementation of a dynam-
ically adaptive capability that adjusts predictions
over time in light of new information and changes
in conditions, which are vital capacities in the
modern HP context. This approach would enable
CNR to leverage the data and expertise they cur-
rently have at their disposal to improve their relia-
bility analysis capabilities, while remaining adapt-
able to improvements in data gathering and man-
agement techniques, as well as evolving degrada-
tion drivers.

The intention is that these models will act as
one input for general MDM’s within CNR that
will be used broadly across assets of various types.
By using the improved asset RUL predictions to
develop scenarios that allocate maintenance re-
sources optimally to find the balance between
maximising the intervals between interventions,
or allocating them to low-production periods, and
minimising failure risks, thus theoretically re-
ducing unexpected failures, improving availabil-
ity and minimising maintenance costs as well as
downtime losses. Fundamentally, when preemp-
tive interventions can be carried out as close to
functional failure as possible, without failure oc-
curring or compromising other safety or environ-
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mental constraints, costs are minimised.
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