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Hydrogen holds significant potential for decarbonizing various industries, including energy and mobility. However,
the limited availability of accident data poses a significant challenge to effective safety risk analysis and assessment.
This study leverages large language models to address the critical task of filling gaps in the Hydrogen Incidents and
Accidents Database (HIAD) 2.1, a prominent repository of hydrogen-related unwanted events. A three-step Artificial
Intelligence-driven algorithm is proposed: (i) a preprocessing phase to standardize and prepare an event description,
(ii) a processing phase utilizing OpenAI’s sentence embedding technology to extract semantic relationships, and (iii)
an enhancement phase employing trained multilayer perceptrons to impute missing data. The algorithm demonstrates
promising results in predicting categorical entries and is applied to enhance the entire database, with a specific focus
on the 2019 fueling station fire in Sandvika (Norway). This case study highlights the proposed algorithm’s potential
to improve our understanding of hydrogen-related incidents and contribute to enhanced risk management strategies.
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1. Introduction

Hydrogen, with its high efficiency and energy
density, is a promising candidate for the decar-
bonization of industries such as transportation,
manufacturing, and power generation (U.S. Depart-
ment of Energy, 2025; IEA, 2021). However, its

classification as an extremely flammable substance,
coupled with its wide flammability range and low
minimum ignition energy, introduces significant
safety challenges (Campari et al., 2023). Hydro-
gen’s physicochemical properties, including low
density and boiling point, necessitate its storage
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and transport as either high-pressure compressed
gas or cryogenic liquid (Guo et al., 2024). Addi-
tionally, hydrogen’s incompatibility with several
industrial materials, such as metals, can lead to
embrittlement and degradation of mechanical prop-
erties (Abohamzeh et al., 2021). Consequently,
hydrogen production, handling, storage, transfer,
and use require stringent measures to ensure safety,
prevent ignition, and protect people, assets, and
the environment. Comprehensive risk analysis and
assessment are critical for supporting operators
and decision-makers in designing, planning, and
operating hydrogen facilities. The widespread de-
ployment of hydrogen technologies across indus-
tries underscores the importance of systematically
recording and analyzing unwanted events to iden-
tify trends and root causes. The Hydrogen Inci-
dents and Accidents Database (HIAD) serves as a
valuable repository of hydrogen-related unwanted
events, enabling risk assessment and the develop-
ment of safety protocols (European Commission
JRC, 2023; Wen et al., 2022; Alfasfos et al., 2024).
HIAD 2.1 stores incident details across various
attributes, such as ignition source, location, and
release type. However, extracting meaningful in-
sights from this database is challenging due to its
unstructured, multimodal, and sparse nature, which
limits the effectiveness of traditional analytical
methods. Therefore, the manual processing of such
a dataset is time-consuming and potentially leads
to errors in safety assessments.

Recent advancements in artificial intelligence
(AI), particularly in deep learning, provide promis-
ing tools for addressing these challenges. Large
language models (LLMs), a class of foundation
models, excel in information retrieval, semantic
analysis, and data generation by leveraging bil-
lions of parameters trained on diverse datasets
(Brown et al., 2020). Built on transformers, LLMs
model complex relationships in sequential data
through self-attention mechanisms (Vaswani et al.,
2017). Examples include OpenAI’s GPT models
and Google’s BERT (OpenAI, 2025; Devlin et al.,
2019). LLMs use sentence embeddings to convert
textual data into dense, fixed-dimensional numeri-
cal vectors that encode semantic meaning. Embed-
ding methods, such as word2vec and transformer-

based techniques, enable efficient computation for
downstream tasks like clustering, classification,
and prediction (Mikolov et al., 2013; Vaswani et al.,
2017). In safety-critical databases like HIAD 2.1,
these embeddings are instrumental in extracting
semantic relationships and contextualizing event
descriptions, facilitating missing data imputation.
Despite their demonstrated success in analyzing
complex datasets, applying LLMs and deep learn-
ing architectures to unstructured hydrogen safety
data, such as in HIAD 2.1, remains unexplored.
Leveraging these methods can significantly im-
prove the extraction of patterns and relationships
within incident data, leading to enhanced data
quality and more robust risk mitigation strategies.

This paper presents a novel algorithm to enhance
the HIAD 2.1 database by integrating LLM embed-
dings with multilayer perceptrons (MLPs). The
proposed algorithm aims to address data sparsity,
improve information completeness, and uncover
hidden patterns in the dataset.

The remainder of this paper is structured as
follows: Section 2 details the proposed database
enhancement algorithm, including the training and
validation procedures. Section 3 presents and dis-
cusses the study’s main results. Finally, Section 4
concludes the paper and outlines potential future
directions.

2. Proposed Method

The proposed algorithm is designed to effectively
process individual event descriptions from the
HIAD 2.1 database and infer missing event infor-
mation. Formally, the HIAD 2.1 database can be
expressed as a set D defined as:

D � {E1, . . . , EN} , (1)

where En represents a unique event in the database,
with n = 1, . . . , N . The database attributes (i.e.,
the column headers) are denoted as:

A � {a1, . . . , aM} . (2)

Consequently, the generic event description En

can be represented as a set of attribute-value pairs:

En � {(a1, vn1) , . . . , (aM , vnM )} , (3)
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where vnm denotes the value of attribute am for
event En. If the value for a specific attribute
am is missing for an event En, it is represented
as vnm = ∅. This mathematical representation
provides a rigorous framework for describing the
proposed algorithm, ensuring clarity and precision
in handling event data and attributes. The focus of
this work is to fill in missing entries in the database,
particularly for attributes that are categorical in
nature, allowing a finite amount of known possible
values. This constraint enables the design of robust
algorithms capable of accurately inferring missing
values within a structured domain.

2.1. Algorithm Description

The proposed algorithm operates in three sequen-
tial steps, as illustrated in Fig. 1:

(i) Event preprocessing: This step standardizes and
processes the event description as it appears in
the database. It ensures that data are formatted
and cleaned for the next steps, eliminating
inconsistencies and preparing the input for nu-
merical representation.

(ii) Sentence embedding: Using an LLM, the pre-
processed event description is transformed into
a dense numerical vector via sentence embed-
ding. These embeddings capture the semantic
relationships within the text, enabling efficient
downstream analysis.

(iii) Event enhancement: The resulting numerical
embeddings are passed to a set of MLPs. Each
MLP is specifically designed to predict and infer
missing categorical data for a particular attribute
in the event description.

2.1.1. Event Preprocessing

The HIAD 2.1 database aggregates data from
diverse sources, including news reports, inspection
documents, other databases, and scientific litera-
ture. These heterogeneous sources vary in quality
and detail, necessitating a preprocessing step to
filter out errors, irrelevant content, and biases
from the event descriptions. Out of 61 database
columns, 45 are identified as relevant. Columns
such as “event ID”, “quality”, and “event title”
are excluded because they provided minimal addi-

tional information. However, several of the retained
columns exhibit inconsistencies or ambiguities,
such as cases where “deflagration” and “detonation”
are both marked as “yes”, despite being mutually
exclusive outcomes. The following interventions
are implemented to address these issues:

• Unit consistency: Missing units for variables are
identified and added to the column header.

• Correction of inconsistent entries: Erroneous
data are rectified. For example, instances where
non-hydrogen substances are incorrectly re-
ported as 100% hydrogen are corrected.

• Elimination of noisy entries: Values such as
“not yet specified”, “unknown”, “not specified”,
and “NaN” are replaced with blank cells to
indicate missing data. Typos and inconsistencies
in capitalization are also standardized.

• Numerical uniformity: Columns expected to
contain numerical values but exhibiting non-
numeric data are reviewed, and inconsistent
entries are excluded.

These adjustments can be automated by hardcod-
ing them into the preprocessing pipeline. Given an
event of interest with its initial description E0, the
preprocessing step transforms it into a standardized
representation E′

0:

E′
0 � ((a′1, v

′
01) , . . . , (a

′
M ′ , v′0M ′)) , (4)

where M ′ denotes the revised number of attributes.
Also here, a missing value is indicated as v′0m = ∅.

2.1.2. Sentence Embedding

After preprocessing, the event description must
be transformed into a numerical vector for subse-
quent processing. This transformation is achieved
through sentence embedding technology. Since em-
bedding models typically require a text string rather
than a structured table as input, the event data
are first concatenated into a single coherent text
representation. The concatenation follows these
guidelines:

• Consistent field formatting: Delimiters are stan-
dardized (e.g., “:” separates attributes from their
values, and “–” is used for lists). Column headers
are converted to uppercase.
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Fig. 1. Block diagram of the proposed algorithm.

• Text standardization: Unnecessary characters,
such as multiple spaces, unwarranted line breaks,
and superfluous symbols, are removed.

• Conversion to bullet points: Columns with com-
plex or interrelated data (e.g., the causes column)
are formatted as bullet points.

• Separation of categories: Different attributes are
separated by line breaks, creating a structured
text format.

• Exclusion of empty fields: Columns with missing
values are omitted.

Following these steps, the event description un-
dergoes the transformation E′

0 → E′′
0 , where

E′′
0 is a single text string representing the event’s

description in a structured format. This formatted
text is then passed to a sentence embedding model.
This study generates embeddings using OpenAI’s
text-embedding-3-large model (OpenAI, 2025).
The embedding process converts the text string E′′

0

into a dense vector e0 �
[
e
(1)
0 · · · e(F )

0

]T
, where

F = 3072 is the selected embedding size.

2.1.3. Event Enhancement

The embedding vector e0, generated as described
in Section 2.1.2, is fed into multiple MLPs. The
purpose of these MLPs is to infer information
missing from the original database for the event of
interest. Suppose that, after the preprocessing step

described in Section 2.1.1, the event description is
missing the value for the ith column, i.e., v′0i = ∅.
In this case, a specifically trained MLP predicts
and fills the value of the ith column, denoted as v̂′0i.
When applied across all relevant attributes, this step
enhances the event description, transforming it into
a more complete representation. This enhanced
event can be formalized as:

E∗
0 � ((a′1, v

∗
01) , . . . , (a

′
M ′ , v∗0M ′)) , (5)

where the generic enhanced value v∗0i is defined as:

v∗0i �
{
v̂′0i , if v′0i = ∅
v′0i , otherwise

. (6)

Although each MLP operates independently to
predict values for different attributes, they share a
common structure:

• Input layer: Accepts the embedding vector e0
and has F (the embedding size) input nodes.

• Hidden layers: Consist of a constant number
of nodes per layer, each employing the ReLU
activation function.

• Output layer: Focuses on predicting categorical
entries. Each node in this layer corresponds to
a possible value of the attribute of interest. The
softmax activation function assigns probabilities
to each possible value. The predicted value corre-
sponds to the node with the highest probability.
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2.2. Training and Validation

The training and validation process for the MLP
designed to predict values associated with the
attribute a′m involves the following steps:

(i) From the preprocessed database D′ �
{E′

1, . . . , E
′
N}, events missing the value of

a′m are removed. Specifically, if v′nm = ∅, the
event E′

n is excluded from D′ for all n.
(ii) For the remaining events, the values of the

attribute a′m are hidden by setting v′nm = ∅
for all n.

(iii) The remaining attributes of each censored
event are concatenated, and sentence em-
bedding is performed to generate numerical
representations of the events.

(iv) The hidden variables are used as target vari-
ables and are encoded via one-hot encoding.

(v) 15% of the remaining events is set aside as
the test set, while the other 85% is used for
cross-validation.

(vi) Hyperparameters are selected, including the
number of hidden layers (NHL), the number
of nodes per hidden layer (NNL), and the
learning rate (μ).

(vii) For the chosen NHL, NNL, and μ, a 10-fold
cross-validation is performed. During each
iteration, the network is optimized using
backpropagation and the Adam optimizer to
minimize the cross-entropy loss function, with
early stopping applied based on the lowest
validation loss achieved.

(viii) After completing the 10-fold cross-validation,
the average of the lowest validation losses
from each iteration is computed. This value is
assigned to the corresponding configuration
of NHL, NNL, and μ.

By iterating over steps (vi) to (viii) for various
combinations of NHL, NNL, and μ, the optimal
MLP configuration is identified as the one that
minimizes the average validation loss.

3. Results and Discussion

This section describes the performance of the
proposed algorithm on the test set. It provides
an aggregated overview of the results obtained
by applying the algorithm to enhance the entire

HIAD 2.1 database and delves into insights from
the Sandvika fueling station incident.

3.1. Performance Evaluation

The proposed model is evaluated using the test
set. Performance metrics are macro-averaged pre-
cision (Prec), macro-averaged recall (Rec), and
accuracy (Acc). This evaluation focuses on the
following attributes: (1) event initiating system;
(2) classification of the physical effects; (3) nature
of the consequences; (4) release type; (5) ignition
source; (6) high pressure explosion; (7) high volt-
age explosion; (8) fire type; (9) application type;
(10) specific application – supply chain stage; (11)
storage/process medium; (12) location type; and
(13) operational conditions.

Table 1 presents the algorithm’s performance
after training and validating the MLPs using the
procedure detailed in Section 2.2. The algorithm
achieves performance above 0.5 across all three
metrics for 10 out of the 13 selected columns. This
indicates that the proposed algorithm effectively ex-
tracts information from event descriptions to infer
missing table values accurately. The simultaneous
achievement of high values of Prec, Rec, and Acc

demonstrates the algorithm’s effectiveness while
mitigating the impact of class imbalance. However,
the results also show that the proportion of missing
values per attribute influences the performance.
Attributes with higher absence rates tend to yield
poorer results due to the limited number of events
available for training and validation. Additionally,
attributes with a larger number of possible values
exhibit reduced performance, likely due to the
higher complexity of the imputation task.

3.2. Enhanced HIAD 2.1

After the algorithm is presented and its perfor-
mance evaluated, it is applied to the entire HIAD
2.1 database to fill in the missing data for the
13 attributes listed in Section 3.1. Due to the
limited data availability, the MLPs are retrained
following the procedure described in Section 2.2.
However, in step (v), no portion of the remaining
events is set aside for testing, allowing all avail-
able data to be used for training. Consequently,
the algorithm imputes missing values within the
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Table 1. Algorithm performances

Attribute Prec Rec Acc
Absence
(%)

No.
values

1 0.69 0.70 0.74 0.79 2
2 0.83 0.78 0.90 1.07 3
3 0.78 0.77 0.81 0.00 5
4 0.63 0.40 0.85 54.97 4
5 0.12 0.15 0.27 87.15 11
6 0.58 0.57 0.67 81.99 2
7 1.00 1.00 1.00 85.83 2
8 0.65 0.54 0.69 86.49 4
9 0.67 0.59 0.79 2.52 12

10 0.82 0.77 0.75 3.71 12
11 0.57 0.53 0.93 11.52 4
12 0.36 0.39 0.69 43.31 4
13 0.69 0.71 0.77 50.86 2

Note: The metrics exceeding 0.5 are reported in bold.

investigated categorical attributes. This capability
is particularly valuable for attributes with a high
percentage of missing values, as they are essential
for a comprehensive understanding of events and
for proposing effective safety recommendations.
For example, Fig. 2 and Fig. 3 illustrate the effect
of the database enhancement on the operational
conditions and fire type attributes, respectively,
comparing the original data available in HIAD 2.1
with the algorithm’s predicted values. In particular,
results in Fig. 2 confirm that most events occur
during normal operations (Wen et al., 2022). Un-
derstanding operational conditions during a broad
set of undesired events serves as a critical basis for
refining existing recommendations and identifying
new ones related to personnel training, active and
passive safety measures, equipment monitoring,
and maintenance procedures (Wen et al., 2022).
Additionally, uncovering patterns between oper-
ational conditions and other relevant attributes
(e.g., release type) could provide valuable insights
into safety barriers, benefiting a wide range of
stakeholders, including policy-makers, hydrogen
technology manufacturers, and plant operators.

3.3. Sandvika Incident

The developed algorithm is applied to the incident
that occurred in 2019 at the hydrogen refueling

station in Kjørbo, outside Oslo, Norway (Nel
Hydrogen, 2019). In this incident, a hydrogen leak
originated from the high-pressure storage unit due
to the erroneous assembly of a specific plug in a
hydrogen tank. The root cause was attributed to
human error, as the inner bolts of the plug were
not adequately torqued. The released hydrogen
mixed with air, and ignition occurred when the
concentration reached the flammability limits. Al-
though the exact cause of ignition remains unclear,
investigations suggest two possible triggers: auto-
ignition or gravel movement underneath the storage
unit. While no physical explosion occurred, the
leaked hydrogen ignited in the open air, causing
a pressure wave. It took approximately two hours
to extinguish the fire fully. The incident caused
significant disruptions, including traffic congestion
and the closure of nearby roads. Three individuals
were treated for minor injuries at the hospital,
resulting from airbag deployments in vehicles near
the site. No human fatalities or on-site injuries were
reported.

For this analysis, the MLPs are retrained, exclud-
ing the Sandvika incident and treating it as a single-
sample test set. Table 2 indicates that the incident
description in HIAD 2.1 includes complete data
for 9 out of 13 categorical columns. The table also
presents the imputed values predicted by the model
for the remaining four columns. Specifically, the
ignition source is predicted as “other”, aligning
with reports that the cause of ignition remains
unclear (Nel Hydrogen, 2019). Both high pressure
explosion and high voltage explosion are correctly
predicted as “no”, as these scenarios do not apply
to this incident. Finally, operating conditions is pre-
dicted as “normal”, consistent with the conditions
reported at the time of the incident.

To deepen the analysis, the imputation algo-
rithm is reapplied to the event description after
systematically censoring each of the nine known
categorical values. The table shows that 5 out of 9
predicted values do not match the original database
entries. However, these discrepancies highlight
how multiple values can be appropriate descriptors
for an attribute. In two instances, the predicted
values are accurate alongside the original entries.
For the category specific application – supply
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Fig. 2. Operational conditions. The circle shows inferred proportions and absence rate (% inside the circle).
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Fig. 3. Fire type. The circle shows inferred proportions and absence rate (% inside the circle).

Table 2. Proposed algorithm applied to the Sandvika incident.

Attribute
Original value and
imputed value

Individual
censoring

Individual censoring
Attr. 3 always censored

Individual censoring
Attr. 3 changed to “fire”

1 hydrogen system initiating event � � �
2 hydrogen release and ignition � � �
3 explosion fire fire (no new test needed) fire (forced)
4 gas � � �
5 other
6 no
7 no
8 jet flame fireball fireball fireball
9 hydrogen refueling station hydrogen production � �

10 hydrogen as a fuel hydrogen storage � �
11 gas � � �
12 semiconfined open open open
13 normal

Note: A check mark (�) indicates that the predicted value matches the value present in the original database.

chain stage, the model predicts “hydrogen storage”
instead of “hydrogen as a fuel”. This prediction
is contextually accurate, as the incident occurred
while the hydrogen was contained in a storage
tank despite its ultimate use as a fuel. Similarly,
when the nature of the consequence category is

censored, the model predicts “fire” instead of the
original entry “explosion”. This is not an error, as
the incident involved a continuous fire alongside
the overpressure observed upon ignition.

As the incident is better described as a “fire”
than an “explosion”, the analysis is extended under
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two settings: (i) permanently censoring the nature
of the consequence category, and (ii) permanently
changing it from “explosion” to “fire” before
reanalysis. Interestingly, both experiments lead to
an improvement in prediction outcomes. In both
cases, categories that were previously predicted
correctly retain their outcomes. At the same time,
application type and specific application – supply
chain stage are reclassified as “hydrogen refueling
station” and “hydrogen as a fuel”, respectively,
aligning with the original database entries. As
a result, only fire type and location type remain
misclassified.

This final analysis highlights the potential im-
pact of inaccurate or imprecise information in an
event description intended for enhancement. This
is because while the MLPs are tuned using a com-
bination of information directly from the training
set and indirectly from the selected text embedding
model, their outputs are heavily influenced by the
quality of the input data. Since the algorithm treats
this input as the ground truth, ensuring its accuracy
is essential to achieve optimal performance when
implementing the proposed AI solution.

4. Conclusions and Future Directions

We presented an algorithm integrating LLM em-
beddings with MLPs to enhance HIAD 2.1, ad-
dressing data sparsity and completeness chal-
lenges. Performance assessment and analysis of the
Sandvika incident demonstrated promising results
across most attributes, highlighting the algorithm’s
flexibility in handling complex event descriptions.
Key findings emphasize the importance of accu-
rate input data and challenges like high absence
rates and categorical complexity, underscoring the
algorithm’s potential to improve hydrogen safety
management by preventing similar incidents. Fu-
ture directions include: (i) imputation of numerical
values; (ii) tailored handling of data modalities;
(iii) exploration of alternative embedding and en-
hancement models; (iv) deeper optimization of
neural networks for better performance; and (v)
application to other safety-related databases.
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