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Abstracts: In the context of the Internet of Things (IoT), gesture control offers a natural and convenient interaction 
method. Compared to traditional physical buttons or touchscreens, gesture control is more intuitive and flexible, 
making it highly suitable for smart clothing applications. This study focuses on analyzing the reliability of PET 
(Polyethylene terephthalate)-based piezoresistive thin-film sensors for hand gesture recognition, demonstrating their 
potential for smart clothing. A survey identified 13 common hand gestures frequently used in daily activities. 
Experimental results showed that the sensors effectively recognized these gestures, achieving a recognition accuracy 
of 99.4% through neural network modeling with the original design of 25 sensors. To simplify the design and 
improve reliability, a greedy algorithm was used to find a locally optimal solution, reducing the number of sensors 
from 25 to 6 while maintaining a recognition accuracy of 97%. This optimization significantly reduced system 
complexity, lowered costs, and made the product more environmentally friendly. In reliability testing, the original 
25-sensor design had a failure rate of 7.69×10−5, with the first failure occurring after 13,000 uses. The optimized 
design with 6 sensors exhibited a slightly improved failure rate of 7.64×10−5, with the first error appearing after 
13,082 uses. As testing continued, error fluctuations increased in both layouts, indicating that long-term sensor 
performance degrades over time. However, the optimized design notably enhanced the system's durability and 
reliability. In conclusion, this study confirms that PET-based sensors are not only reliable but also benefit from 
sensor quantity optimization, improving system durability and cost-effectiveness. These qualities make them highly 
suitable for integration into smart clothing’s remote-control systems, offering a lightweight, durable, and efficient 
solution for future innovations. 
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1. Introduction 

In the context of Internet of Things (IoT), 
developing smart clothing has already been a 
trend and widely used in the medical 
industry(Fatima et al., 2024; Oh et al., 2024), 
human-machine interaction (HMI) (Wang et al., 
2024; Li et al., 2024) and virtual reality(Kuo et al., 
2023). Smart clothing can be seen as a system that 
facilitates interaction between body parts and 
sensors. In this field, the coordination between 
various body parts and different sensors is crucial. 
Among these, the hand, as one of the most 
frequently used parts of the human body, plays a 

vital role in smart clothing due to its wide range 
of possible gestures. There is some research on 
the interaction between the hand and the sensor. 
Zhao et al. (2024) introduced an innovative sensor 
array that leverages triboelectric and electrostatic 
effects for the detection and capture of diverse 
hand gestures (Zhao et al., 2024). Similarly, Yang 
et al. (2024) presented a stretchable epidermal 
sEMG sensor array system, enhanced through 
optimized materials and structural strategies, 
aimed at recognizing hand gestures and aiding in 
hand function rehabilitation (Yang et al., 2024; 
Zafar et al., 2023). The commonality among these 
studies lies in their use of flexible sensors instead 
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of traditional ones. Traditional sensors, due to 
their fragility and low sensitivity, are unsuitable 
for smart clothing applications (Wang et al., 
2021), which primarily rely on e-textiles and 
flexible sensors. In the context of smart clothing, 
flexible sensors demonstrate excellent 
performance in terms of sensitivity (Han et al., 
2019), compatibility, and long-term durability, 
making them highly suitable for these 
applications (Pitcheri et al., 2024), especially in 
scenarios requiring frequent deformation (Zhang 
et al., 2024). Much research focuses on flexible 
pressure and simply defines flexible pressure 
sensors into three categories: piezoresistive, 
capacitive, and piezoelectric. (Xiao et al., 2018; 
Wang et al., 2021). Among them, the 
piezoresistive pressure sensor which need to 
complete the gesture control task is the research 
focus in this research. While there are limited 
studies using PET-based pressure sensors for 
gesture recognition, these sensors have shown 
stable sensing performance and excellent 
durability (Zhou et al., 2024), making them an 
ideal fit for this research. Therefore, we employ 
PET-based pressure sensors to test their ability to 
accurately recognize 13 hand gestures and 
evaluate their durability. 

2. Objective and Importance of Research 

2.1 Research objectives 
(i) Identifying common hand gestures 

regarding human behaviours. 
(ii) Validating the sensitivity of PET-based 

piezoresistive thin-film sensors for 
gesture controller.  

(iii) Optimizing the PET-based 
piezoresistive thin-film sensors 
deployment of hand.   

(iv) Investigating the reliability of the PET-
based piezoresistive thin-film sensors 
while applying to the gesture controller.  

2.2 Research significant 
(i) By identifying common hand gestures 

related to human behaviours, this 
research aims to improve the accuracy 
and applicability of gesture recognition 
systems, thereby promoting the use of 
smart clothing and wearable devices in 
everyday life. Offers a basis for 
durability testing of flexible thin-film 
pressure sensors. 

(ii) By validating the sensitivity of PET-
based piezoresistive thin-film sensors, 
this research ensures their effectiveness 
and responsiveness in gesture 
controllers, which is crucial for 
achieving real-time and precise gesture 
recognition. Flexible thin-film pressure 
sensor gloves can serve as control 
interfaces for smart devices, offering a 
more convenient and multifunctional 
human-machine interaction method 
through gesture recognition.  

(iii) Optimize deployment of hand sensors 
helps reduce the number of sensors 
while maintaining high accuracy, thus 
lowering costs and enhancing the user-
friendliness of the devices.  

(iv) By investigating the reliability of these 
sensors in gesture control applications, 
this research provides a solid foundation 
for the use of this technology in real-
world scenarios, driving innovation in 
human-machine interaction, healthcare, 
and other fields. 
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                                                           Fig.1: Research Framework 
 

3. Experiment Design 

3.1. To achieve Research Objective ⅰ 
Sub-headings should be typeset in boldface italic. 
Capitalize the first letter of the first word only.  
Leave no space after the sub-headings; leave one 
space before. 

3.1.1. Input 
� This study interviewed 30 people to collect 

their commonly used gestures. 
� Through a questionnaire survey, we screened 

the commonly used gestures collected from 
interviews. First, we analysed the survey 
results to identify gestures selected by more 
than 50% of participants. These high-
frequency gestures were then chosen as the 
subjects for sensitivity analysis. 
Subsequently, we further filtered these 
gestures to retain the most representative 
ones for detailed study and analysis in the 
following stages. 

� Excluding military, traffic, sign language, 
and sensitive gestures 

3.1.2. Output 

� Through the interviews, we collected the 18 
gestures shown in the figure below (Fig.2). 

 

 
Fig.2: Hand gesture (18) 

 
� The questionnaire results showed that 14 

gestures were selected by 50% or more of 
participants (Table.1). After excluding one 
offensive gesture, 13 gestures remained 
(Fig.3). 

Research Question 1:

How many common hand gestures human used to use?

Goal 1:

To find available hand gesture controllers

Result1:

Identifying 13 out of 18

common hand gestures

regarding human behaviors

Method1: Conducting 100 questionnaire survey Step 1

Research Question 2:

Are PET-based piezoresistive thin-film sensors sensitive
to these gestures' recognition?

Goal 2:

To achieve gesture recognition

Result2:

Establishing a model with

99.4% accuracy to validate

13 hand gestures for gesture controller

Method2: Applying the neural network modeling to test the experimental data Step 2

Research Question 3:

Is this possible to optimize the PET-based piezoresistive
thin-film sensors deployment of hand?

Goal 3:

To reduce complexity and cost for further design

Result3:

Identifying 6 instead of 25

deployment points of hand

to achieve recognition

Method3: Employing a greedy algorithm to optimize Step 3

Research Question4:

Are PET-based piezoresistive thin-film sensors reliable while
applying to the gesture controllers?
Goal 4:

To figure out the possibility for the future product design

Result4:

The first failure time is at
13000 times while testing

Method4: Conducting reliability test experiment Step 4
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         Fig.3: Hand gesture (13) 

 

Table.1: Survey results of 18 gesture 
 

 

3.2. To achieve Research Objective ⅱ 

3.2.1 Input 
� In the experiment, a palm pressure sensor 

equipped with 25 piezoresistive thin-film 
pressure sensors will be used to perform 13 
different gestures, with each gesture repeated 
2000 times (Fig.4). Experimental data will be 
recorded, and based on the results, a neural 
network model will be developed. The aim is 
to test the sensitivity of the palm pressure 
sensor in recognizing the 13 gestures using 
the collected data. 

 
           Fig.4: Experimental process picture 

3.2.1 Output 
� Using the recorded experimental data, we 

developed a neural network model for pattern 
recognition with an accuracy of 99.4%. The 
data distribution during training was 60% for 
training, 20% for testing, and 20% for 
validation. 

 

 

 
Fig.5: Confusion Matrix at the End of Training 

3.3. To achieve Research Objective ⅲ 

3.3.1 Input 
� Having too many sensors can cause 

discomfort for the wearer and increase costs. 
Therefore, finding a combination of a small 
number of sensors that still achieves high 
model accuracy is crucial. Due to the 
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numerous possible combinations of 25 
sensors, this study employs a greedy 
algorithm to identify a relatively efficient 
sensor combination. Definition of the greedy 
algorithm: The core idea of the greedy 
algorithm is to achieve a global optimum 
through local optimum choices at each step. 
In other words, the greedy algorithm always 
makes the best immediate choice without 
considering potential future scenarios. This 
strategy often results in high execution 
efficiency but does not guarantee the optimal 
solution in every case.  

3.3.2 Output 
� Through the analysis using the greedy 

algorithm, we found that retaining only 6 
sensors (Fig.6) can achieve a model accuracy 
of 97%(Fig.8). This significantly reduces the 
cost of designing the gesture controller and 
enhances the comfort for the wearer. In 
addition, with further optimized features, this 
study has developed a product model (Fig.7).  

 

Fig.6: Optimized point map 
 

 

Fig.7: Optimized Product Model 
 

 
Fig.8: Confusion Matrix (6 sensors) 

3.4. To achieve Research Objective ⅳ 

3.4.1 Input 
This study explores the reliability of resistive 
thin-film pressure sensors. Observations reveal 
that when using a combination of 25 sensors, the 
system experienced its first failure after 13,000 
uses, whereas with a combination of 6 sensors, the 
first failure occurred after 13,082 uses. To further 
investigate the durability of the sensors, the error 
values of the 25-sensor combination in a flat state 
were recorded at 13,000, 26,000, and 39,000 uses. 
Similarly, the error variations of the 6-sensor 
combination under the same conditions were 
recorded at 13,082, 26,000, and 39,000 uses. 
These data are used to analyze how the durability 
of the sensors changes with the number of users. 

3.4.2 Output 
� Test Results for the 25-Sensor Combination: 

From the data presented in Figure 9, it is 
evident that the error variation of the sensors 
changes significantly over time. At 13,000 
uses, the average error was 0.000304, 
indicating relatively stable sensor 
performance. By 26,000 uses, the average 
error increased to 0.005672, nearly 19 times 
higher than at 13,000 uses. At this point, 
more sensors began to exhibit larger errors, 
indicating a notable decline in system 
stability. By 39,000 uses, the average error 
further increased to 0.025576, approximately 
84 times the value at 13,000 uses, 
demonstrating significant degradation of the 
system after prolonged operation. Overall, as 
the number of uses increases, the sensor 
system's error progressively expands, with 
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the long-term stability of the system showing 
a marked decline, especially by 39,000 uses. 

 

 

Fig.9: Error fluctuation diagram for 25 pressure 
sensors 

Test Results for the Optimized 6-Sensor 
Combination (Fig. 10):  
 
From the data in the table, it is clear that the error 
variation of the sensors changes significantly over 
time. At 13,082 uses, the average error was 
0.0002, indicating relatively stable system 
performance, with most sensor errors close to 
zero. By 26,000 uses, the average error increased 
to 0.0038, which is 19 times higher than at 13,082 
uses. At this point, more sensors exhibited error 
fluctuations, indicating the beginning of system 
performance degradation. By 39,000 uses, the 
average error further rose to 0.016433, 
approximately 82 times the value at 13,082 uses. 
At this stage, some sensors showed significant 
error increases, demonstrating noticeable 
performance deterioration and a marked decline 
in system stability after prolonged operation. 
Overall, as the number of uses increased, the 
sensor errors progressively expanded. 
Particularly at 39,000 uses, the system's long-term 
stability and durability showed a significant 
decline. 

 

Fig.10: Error fluctuation diagram for 6 pressure 
sensors 

 
� Reliability Comparison Between Pre- and 

Post-Optimization (Fig.11): 
 
At the first measurement, the average error 
for the 6-sensor combination was 0.0002, 
while that for the 25-sensor combination was 
0.000304, with the 25-sensor error being 1.52 
times that of the 6-sensor combination. At the 
second measurement, the error for the 6-
sensor combination increased to 0.0038, 
whereas the 25-sensor combination error rose 
to 0.005672, which is 1.49 times higher. By 
the third measurement, the error for the 6-
sensor combination reached 0.016433, 
compared to 0.025576 for the 25-sensor 
combination, making it 1.56 times higher. 
Overall, the errors for the 25-sensor 
combination were consistently higher than 
those for the 6-sensor combination, with the 
difference ranging from 1.49 to 1.56 times. 
This indicates that the 6-sensor combination 
exhibits more stable performance over long-
term use, with error growth being more 
gradual and the system demonstrating greater 
reliability. 
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Fig.11: Reliability Comparison Between Pre- and 
Post-Optimization 

4. Discussion 

This study selected 13 gestures through 
interviews and questionnaires to ensure their 
intuitiveness and broad applicability. However, as 
gesture selection is influenced by individual 
habits, cultural backgrounds, and cognitive 
biases, a fixed set of gestures may not be suitable 
for all users. Therefore, future research could 
consider expanding the data collection scope to 
include a more diverse population, thereby 
enhancing the generalizability and applicability of 
the gesture library. 
Regarding gesture recognition performance 
optimization, the experimental results indicate 
that the neural network model achieved 99.4% 
recognition accuracy with a 25-sensor 
configuration. When optimized to six sensors, the 
system still maintained 97% accuracy, 
demonstrating that reducing the number of 
sensors does not significantly compromise 
recognition performance. This optimization is 
particularly significant in reducing hardware costs 
and improving user comfort. However, in 
practical applications, the system may still be 
affected by the difference of individual hand 
movement habits and hand structure. Therefore, 
future research could further explore personalized 
gesture recognition systems, integrating on-site 
adaptive machine learning, allowing the system to 
locally fine-tune the gesture model based on the 
user’s gesture style, force application pattern, and 
individual habits, thereby enhancing adaptability 
and recognition stability. 
Furthermore, to ensure the long-term reliability of 
the system, durability testing indicates that sensor 
errors gradually increase with usage. Although 
the optimized six-sensor configuration exhibited 
lower overall errors than the 25-sensor 
configuration, both configurations experienced 

performance degradation over extended use, 
highlighting stability concerns in long-term 
applications. Therefore, future research should 
explore improvements in sensor materials, error 
compensation calibration strategies, and 
intelligent maintenance methods to enhance the 
system’s durability. In particular, by integrating 
intelligent maintenance and predictive fault 
detection, the system can continuously monitor 
sensor performance in real time and make 
automatic adjustments before significant 
degradation occurs, further improving long-term 
stability and practical application value. 

Conclusion 

The study recognized 13 common hand gestures 
that can applied PET-based piezoresistive thin-
film sensors for gesture controller. Through the 
observation of human behavior, sensitivity 
experiments, and reliability test, the results show 
the possibility of the using the minimum number 
of six sensors to recognize 13 hand gestures for 
further gesture controller use in smart clothing.   
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