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Abstract: Technological progress in the industrial context has encouraged using robots and autonomous systems 

within industries, focused on introducing solutions to monitor the safety and risks related to Human-Robot 

Collaboration (HRC). The proposed analysis will meet this requirement, using a mathematical model, which, 

starting from the systematic analysis of traditional interaction models, analyses the mutual interplay between robots 

and humans. It will evaluate the impact of this collaboration, quantify mutual learning, consider human feedback to 

improve the adaptation of cobots to the working environment, and manage human unpredictability, which is 

responsible for new risk factors. The goal is to improve performance, reduce operator stress and the risk of accidents 

in the workplace and consequently increase safety. 
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1. Introduction 
The growing interaction between humans and robots 

within industrial environments makes it necessary to 

address the problem of managing safety and the risks 

associated with them. This integration brings new 

problems, since robots operate in environments shared 

with humans, and the dynamics between these two 

actors are not always predictable. 

The evolution of industrial production depends on 

adopting robots that can perform repetitive actions and 

interact with humans to accomplish more complex 

functions to increase productivity and flexibility (Zhao 

et al., 2024). Human-Robot Collaboration (HRC) is a 

central matter of interest in the innovative factory 

sector (Liu & Wang, 2018). 
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Recent studies have highlighted the benefits of HRC, 

raising the strengths of robots and humans to achieve 

higher production rates; in particular, robots are 

expected to perform more challenging and monotonous 

tasks while humans deal with more complex and 

innovative ones (Arents et al., 2021). Companies aim 

to modify work environments to create harmonious 

coexistence between humans and robots, looking for 

efficiency and safety in the workplace (Nicora, 

Ambrosetti, & Wiens, 2020). 

Reviewing the HRC models, their shortcomings will be 

highlighted, and the key areas for improvement and 

implementation will be outlined. 

The main problem is the need to guarantee that this 

collaboration safely takes place, minimizing the risks 

of accidents and improving the operators' working 

conditions. The main challenge comes from complexity 

being fundamentally connected to robots’ aptitude for 

following predefined rules and patterns; humans can 

behave unpredictably, creating new risk situations. This 

leads to difficulty adapting cobots to the work 

environment, especially when responding in real time 

to human behaviour (Wang, Wan, Li, & Zhang, 2016). 

Therefore, the objective is to find a solution that allows 

monitoring this interaction and constantly improving 

safety in the workplace. This model will not only 

consider a static model but will also take human 

feedback into account, trying to improve robots' 

adaptability to the working environment and better 

manage human unpredictability. 

The main problem in HRC concerns the management 

of memory and learning over time, which partly 

determines the safety of operators. An individual's 

memory decreases over time without any improvement 

interventions, as highlighted by the Ebbinghaus 

forgetting curve. The proposed model aims to consider 

the rate of memory decay, which reflects how quickly 

information is forgotten, and the mutual adaptation 

between humans and cobots, which can increase the 

operator's real and perceived safety to increase trust in 

the robot. 

The dominant challenge is to integrate a dynamic 

synergy between human and robot through a series of 

feedback, per the law of practice of Newell and 

Rosenbloom. The primary difficulty lies in adapting the 

behaviour of robots in real time, which follow preset 

patterns. For legal reasons, now cannot yet be equipped 

with artificial intelligence in response to human 

unpredictability, improving safety in the workplace and 

optimizing efficiency (Zirar et al., 2023). 

2. Literature Review 
The proposed model represents a significant 

advancement in HRC, integrating adaptive variables 

such as dynamic trust, task complexity, and digital twin 

support. This combination enables more flexible and 

proactive HRC, meeting the needs of Industry 4.0 and 

paving the way for Industry 5.0, which aims at even 

more natural and sophisticated human-robot 

cooperation (Li et al., 2023). 

One of the main topics of Industry 4.0, which attempts 

to incorporate automation, robots, and artificial 

intelligence into industrial processes, is the 

development of HRC. However, robotics integration 

with humans in shared work environments presents 

significant safety, risk management, and mutual 

learning performance improvement issues (Rahman et 

al., 2023). 

Theoretical models that describe human learning 

processes and cognitive decline provide the basis for a 

sizable portion of the literature on Human-Machine 

Interaction (HMI). The Ebbinghaus forgetting curve 

(1885) and the Newell and Rosenbloom law of practice 

(1980) are the most notable. Although both models 

provide important insights, they are severely limited 

regarding dynamic interaction with intelligent 

technologies. 

The Ebbinghaus curve, as shown in Figure 1, illustrates 

how human learning tends to deteriorate dramatically 

over time in the absence of reinforcement. Although 

this paradigm is crucial for understanding memory 

processes, it disregards external factors such as 

machine interface and active feedback. For example, a 

robot might act as a support agent in an industrial 

setting by providing constant and customized 

reinforcement, slowing down the rate at which human 

memory deteriorates. 
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Figure 1- Ebbinghaus Curve  

According to a law proposed by Newell and 

Rosenbloom, human performance rises rapidly in the 

early stages of learning before levelling off. This 

hypothesis emphasizes the idea that progress slows 

down with experience. The static model does not 

consider the dynamic synergy between man and robot, 

which is necessary to enhance performance in a 

collaborative setting. 

One of the main goals of contemporary HRC research 

is to decrease the likelihood of accidents. Recent 

studies have shown that humans can handle complex 

situations by having robots perform dangerous and 

repetitive tasks (Bolla et al., 2023). However, these 

remedies are incompatible with human behaviour’s 

unpredictable nature, a significant risk factor in 

communal settings. 

Traditional HRC models focus on using gesture 

recognition to enable communication between humans 

and robots (Baratta et al., 2024). Reactive robots can 

react to human inputs in real time, but their capacity for 

ongoing adaptation is frequently constrained (Borghi et 

al., 2025). However, these approaches do not include 

reciprocal learning between people and robots. They 

specifically do not dynamically describe how human 

feedback enhances robot replies or how synergy slows 

down human cognitive decline. 

The proposed model will incorporate a human-robot 

synergy element, unlike the Ebbinghaus curve, which 

presumes a passive and unstoppable memory 

deterioration. This feature allows to use the robot’s 

continuous input to postpone the decline of human 

intellect to improve learning in the early stages of 

interaction when the human is more receptive to its 

suggestions and corrections. 

The following research questions will be discussed in 

Methodology paragraph:  

1. What specific mathematical framework will 

be utilized to evaluate the risks inherent in 

HRC?  

2. How will the proposed model accommodate 

the inherent variability in human behaviour 

during real-time interactions with robotic 

systems?  

3. What strategies will be adopted to facilitate 

mutual learning and optimize memory 

retention between humans and cobots over an 

extended period? 

3. Methodology 
Starting from a few established models about HMI, 

such as those described in literature reviews, Hermann 

Ebbinghaus's "Forgetting Curve" and Allen Newell & 

Paul Rosenbloom's "Law of Practice" have created an 

integrated model that aims to overcome each one's 

weakness and fill the gap in the literature. 

Opening with a description of these models, the 

discussion will proceed to their integration, 

highlighting the innovative aspects of each and the 

limitations overcome in the dynamic analysis. 

Ebbinghaus' theory, as anticipated, represents, through 

his forgetting curve, one of the fundamental 

contributions in the history of psychology and the study 

of memory, describing the decline of memory over 

time, showing how learned information is quickly 

forgotten immediately after learning, with a gradual 

decrease in the rate of forgetting over time 

(Ebbinghaus, 1885). 

Ebbinghaus's revolutionary idea was to study memory 

under controlled conditions, eliminating factors such as 

meaning and pre-existing associations that could 

influence the results. To this end, he developed an 

innovative method based on nonsense syllables and 

consonant-vowel-consonant combinations to minimize 

the connection with common language (Roediger, 

2015). With this and other strategies, such as the saving 

method, he created a quantitative method on the 

forgetting process, which has been taken up and 

analysed by many scholars over the years who have 

described it mathematically through a relationship. 

Ebbinghaus’s law of forgetting, used to represent the 
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natural decay of human learning over time (Murre & 

Dros, 2015), is expressed as follows: 

( ) =          (1) 

In the suggested framework, this law is represented by 

the components: 

( ) =          (2) 

Table 1 explains the main terms used by Ebbinghaus's 

methodology: 

 Nomenclature Table 

( ) Retention level or memory time at 

time t: an individual's ability to retain 

information or skills over time after 

learning them. 

 Initial level of memory or learning at 

time t=0 

 Decay rate of memory: how quickly 

knowledge is lost over time without 

reinforcing interventions. 

 Time elapsed since learning or the 

starting point of observation. 

( ) Learning level at time t: which 

includes memory and human-robot 

synergy. 

 Decay rate of learning adapted to the 

context of HMI 

 Initial learning level at time t=0 

Table 1- Ebbinghaus Nomenclature  

This term represents the human component of natural 

decay, modelled exactly like the Ebbinghaus curve. 

Allen Newell and Paul Rosenbloom's theory is based 

on the concept that improvement in performance on a 

complex task, as experience increases, follows a power 

law relationship. When a person begins practising a 

new task, the improvements are rapid. This means the 

learning curve is quite steep at first. After gaining a 

certain amount of experience, improvements become 

less noticeable. The curve flattens, and further 

improvement becomes more difficult even if the 

practice continues (Newell & Rosenbloom, 1980). 

A common mathematical formulation of the law of 

practice is: 

( ) =          (3) 

To adapt it to our model, we implemented the human-

robot synergy component as follows: 

1 +           (4) 

 This term adds a dynamic feedback effect to the model. 

At the start of the learning or interaction process, when 

t is small, the exponential term is close to 1, and the 

synergy effect is high. As t increases, the exponential 

term decays, and the influence of the machine's 

feedback diminishes. 

 In essence, this term shapes how much cobot 

contributes to improving the human's performance over 

time. Its impact is most pronounced initially and taper 

off as the human becomes more proficient and less 

dependent on the machine's guidance. 

Table 2 explains the main terms used by Newell and 

Rosenbloom's methodology: 

 Nomenclature Table 

( ) Performance at time t represents the 

level of skill or accuracy achieved 

after a certain amount of practice or 

repetition. 

 Initial performance at the beginning 

of practice (t=0) is usually the 

baseline skill level before practising 

or learning. 

 A positive exponent determines how 

quickly the improvement slows down. 

The larger  is, the faster the initial 

improvement occurs, but the 
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improvement slows down more 

quickly over time. 

 Time or Trial Number: The number of 

practice sessions, trials, or time 

elapsed during the learning or practice 

process. 

 A constant that determines the 

strength of the synergy effect or 

feedback. The larger the value of , 

the greater the cobot positive 

influence on the learning or retention 

process. 

 A constant that controls how quickly 

the feedback's influence diminishes 

over time. 

Table 2- Newell & Rosenbloom Nomenclature  

The initial synergy 1 +  (4) is maximal at the 

beginning but decreases over time in an exponentially 

decreasing fashion, modelling the concept of slowing 

improvement with practice, consistent with the Power 

Law (performance improves more slowly over time). 

This component represents the effect of robot support 

and mutual feedback that slows decay and accelerates 

human learning in the early stages. 

Combining the two formulas, the law that explains the 

objective of the formulated method has been showing, 

which aims to describe how human learning varies 

when collaborating with a cobot as a function of time. 

It integrates the following criteria: 

1. Natural decay, without external support, 

human learning decays exponentially over 

time, as described by Ebbinghaus, contained 

in the term  

2. In the human-robot synergy effect, robot 

provides positive feedback, temporarily 

improving the human's performance and 

slowing the decay. This effect is maximum at 

the beginning and decreases over time 

following an exponential decreasing trend, 

modelled by the Power Law of Practice:1 +

. 

3. Dynamic combination, human memory and 

robot contribution multiply, creating a 

synergistic interaction that dynamically 

varies over time. 

( ) = 1 +           (5) 

It is didactically relevant to highlight the differences 

between R(t) and A(t), underline the improvements 

made in our model, and highlight the impact of 

feedback and collaboration with the cobot, which can 

slow down the natural decay of memory. 

These differences are summarized in Table 3: 

 M(t) (Retention 

Level) 

A(t) (Learning 

Level) 

Definition Indicates the 

amount of memory 

or knowledge 

retained over time. 

Represents the 

overall 

learning level, 

which includes 

memory and 

human-robot 

synergy. 

Origin Ebbinghaus' 

forgetting curve. 

Human-robot 

synergy 

model, 

integrating 

feedback and 

decay. 

Formula  ( )

=

1 +
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Context Focuses on the 

natural memory 

retention of an 

individual, which 

decays over time. 

Considers 

learning in a 

dynamic 

context 

involving 

collaboration 

with a cobot. 

Sinergy 

Component 

Does not include 

interaction with a 

robot. 

Includes the 

positive effect 

of robot 

feedback. 

Decay Decays 

exponentially over 

time in a natural 

manner. 

Decays 

exponentially 

but is slowed 

down by

human-robot 

synergy. 

Table 3 – Differences between R(t) and A(t) 

In practice, M(t) provides a pure representation of 

memory decaying over time without the influence of 

external factors, while A(t) gives a complete and more 

dynamic picture of human learning when supported by 

technological tools. 

The starting models—Ebbinghaus, Newell, and 

Rosenbloom—exhibit application limits addressed in 

the developed framework. 

The Ebbinghaus forgetting curve is a passive learning 

curve. It does not consider the influence of feedback or 

active collaboration, which could improve the memory 

rate or retentivity over time. Therefore, it represents 

rapid and static forgetting without considering external 

interactions. 

The new model overcomes this by introducing dynamic 

feedback and a collaborative factor between humans 

and cobots. It overcomes this limit by allowing humans 

to learn more quickly and reducing forgetting since 

robots can adapt and improve responses based on the 

user's learning. It can also become a partner that helps 

maintain learning, improving long-term memorization 

and not only providing static information. 

The Newell and Rosenbloom model lacks mutual 

adaptation. It does not consider the dynamic adaptation 

between humans and robots. For example, if robot 

becomes better at responding in a personalized way 

based on humans' needs, the improvement may not be 

linear. 

The proposed model, by introducing the factor 1 +

 (4), dem onstrates how  col laboration bet ween 

humans and cobots can increase the speed of learning 

even in the advanced stages of the process.  

As a result, robots and humans do not learn separately, 

but by adapting to each other, they continue to improve 

together, overcoming the stagnation predicted by the 

 power law. 

3.1 

To clarify the concepts, it will be presented a numerical 

application that will show the learning laws found as t 

varies; it will be replaced “t” in the main formula (5) as 

follows: 

( ) = 1 +  

Initial phase (t=0):

For t=0, human memory ( ) is at its maximum 

(= ), and the robot contribution 1 +  is at 

its maximum (1+1=2). Learning is greatly improved by 

collaboration with it, mathematically, too. 

Intermediate stage (medium t):

For an intermediate t, the human memory decay term 

( ) begins to dominate. The robot continues to 

contribute to slowing the decay, but its impact 

diminishes with time. 

Advanced stage (high t):



1876 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Human memory is almost completely decayed for high 

t tending to infinity, and the robot contribution becomes 

negligible ( ~0). 

Overall, learning is reduced to minimal levels, 

practically zero. 

3.2 Proposition 

Subsequent studies and future research will propose 

implementing this model with a human stress and 

fatigue monitoring-based addition. This will enable the 

simulation of the impact of stress on individual 

performance and allow for a comparison with 

synergistic learning under cobot assistance. By 

pseudocode, implementing this model in Matlab will 

enable visualizing how cobots reduce cognitive 

overload, promoting industrial productivity and 

operator well-being.  

The framework that governs these aspects is expected 

to have a form like this:  

= + +

+   (6) 

The variables are defined as follows: 

  is the total stress of the operator. 

  is stress related to the operator's 

physiological and psychological state, such 

as heart rate or blood pressure variation 

during the interaction with the robot. 

  represents the group dynamics, 

including cooperation, communication, and 

conflict among team members (both humans 

and robots). 

  is the operator's emotional 

response, such as anxiety, frustration, or 

satisfaction, derived from collaboration with 

the robot. 

  reflects the robot's behavior and its 

impact on the operator, such as predictability, 

reliability, and autonomy. 

The parameters , . ,   in the theoretical 

function are scalar weights that determine the relative 

importance of each factor in the overall function . 

Weights can be calculated by analyzing data collected 

from empirical studies or simulations. For instance, by 

measuring how stress changes as each factor varies or 

by normalization, weights are generally normalized 

( + + + = 1) to ensure that the total sum 

reflects a balanced distribution. 

4. Conclusion 

In conclusion, HRC in industrial environments 

represents an excellent opportunity to improve 

production efficiency. However, it also entails 

significant risks related to the unpredictability of 

human behaviour and the decay of human memory. The 

proposed model, which combines the Ebbinghaus 

forgetting curve with dynamic robot feedback and the 

law of practice, innovatively addresses these issues. It 

allows memory decay to slow down through a synergy 

between man and robot, improving performance and 

safety. The introduction of dynamic mutual feedback 

empowers a smoother and safer collaboration, 

responding adaptively to the operator's needs and 

increasing the system's reliability. This approach closes 

the gaps of traditional models and paves the way for 

evolution towards an Industry 5.0 model, where the 

partnership between man and cobot becomes even 

more natural and efficient, with positive impacts on 

productivity and operator well-being. 
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