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Abstract 
It is well known that Lithium-Ion (Li-ion) batteries are one of the most common tools for storing energy due to their 
versatility and scalability. With the growth of the electric vehicle market, the relatively short life of Li-ion batteries 
in vehicle service could lead to significant battery waste. To address this issue, methods have been developed to 
recycle these components and give them a second use in complex electrical systems, contributing to the fight against 
climate change. However, if not properly treated, failures in Li-ion batteries can present risks to human health and 
the environment. Therefore, reliable systems are needed for the use of Li-ion batteries, especially in critical energy 
storage applications. Several aspects must be considered when assessing the reliability of a system, some of them 
include evaluating the failure modes of system components and determining how these failures may impact the 
entire system. A specific method used throughout all stages of this process is Failure Mode and Effect Analysis 
(FMEA). Although this is methodical and time-consuming, FMEA helps identify the causes of events that lead to 
system failure determining the consequences, and ultimately, minimizing both the occurrences and recurrences of 
such events. For this work, a system based on recycled Li-ion batteries for energy storage purposes was evaluated 
using FMEA. This reliability analysis comprehensively assessed risks represented by each of the components 
leading to the identification of the dependence between sensors, tools for temperature regulation, and control 
methodologies (voltage, current, and cycles), which contribute to creating a suitable environment for the use of 
batteries in energy storage. Failures related to these components can lead to capacity and power fade issues, which, 
if they progress, can result in total system loss or may pose serious threats to human health and to the environment. 
 
Keywords: Li-Ion Batteries, Risks, Failures, Reliability, Energy Storage, Failure Modes 
 

1. Introduction 
In today’s world, most human activities that 

require energy (electricity) rely on the usage of 
fossil fuels. In May 2024, roughly 55% of net 
generation capacity in the U.S. was derived from 
coal, petroleum, or natural gas (U.S. Energy 
Information Administration 2024). The burning 
of these fuels not only harms human health but 
also has significant environmental impacts (e.g., 
the release of pollutants, greenhouse gases, and 
the rapid depletion of fossil fuel reserves)  serving 
as a major contributor to global climate change 
(Prasad et al. 2024).   

The issues associated with fossil fuel use are 
coming to bear coincidentally with a steep rise in 
energy demand, driven by increasing 
development and new, power-hungry 
technologies such as Artificial Intelligence (AI) 

(Goldman Sachs 2024). With the rapid 
development of industry and the push for a 
sustainable, environmentally friendly economy, 
the drive to meet these demands has led to 
increasingly complex clean energy solutions (Fan 
et al. 2020).  

The variability of renewable sources (e.g., 
wind and solar) make them insufficient to provide 
power to large-scale electrical grids. Combining 
these technologies with Battery Energy Storage 
Systems (BESS) reduces intermittency and 
unpredictability.  By storing excess energy during 
low-demand periods and releasing it during peak 
demand, BESSs improve energy resilience by 
supplying backup power during grid disruptions 
or crises, alleviating grid stress, and reducing the 
need for costly infrastructure (N. Guru et al. 
2024). 
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Electric Vehicles (EVs) are rapidly 
decarbonizing the transportation sector, and using 
recycled EV components in other applications can 
reduce end-of-life waste and contribute to 
decarbonizing other industries (Martinez-Laserna 
et al. 2018). One of these components is lithium-
ion batteries (LIBs), which retain 70–80% of their 
initial capacity when retired from EV use 
(Martinez-Laserna et al. 2018). These batteries 
can then provide energy storage services in less 
demanding applications such as stationary BESSs 
(Faessler 2021), due to their high energy 
efficiency and power density. 

However, BESSs are not without risks. 
BESS installations that incorporate physical and 
chemical safety mechanisms, along with control-
base algorithms, have been associated with 
various risks related to their use (e.g., premature 
shutdowns, fires, and system damage leading to 
cascading effects), often resulting from short 
circuits caused by overloading, overheating, or 
mechanical abuse (Conzen et al. 2023).  

Regardless of BESS application, an 
unplanned shutdown could result widespread 
consequences: from loss of power to critical 
infrastructure, to grid instability, and/or damage 
to other generation equipment. Furthermore, the 
system design and lack of operational experience 
could introduce potentially unknown risks when 
using these systems. 

To identify and prevent the risks associated 
with these types of systems, Failure Mode and 
Effects Analysis (FMEA) is used to conduct 
early-stage risk assessments. This approach offers 
several advantages throughout product 
development, enabling the identification and 
resolution of potential risks before they escalate 
into costly problems (Sharma and Srivastava 
2018), facilitating the development of 
countermeasures to mitigate potential failures. 

In this paper, a comprehensive Failure Mode 
and Effect Analysis methodology is applied to a 
BESS with second-life Li-ion batteries to identify 
failure modes, effects, and causes. The analysis is 
combined with the use of an online tool, the 
Reliability Online Automated Databook System 
(ROADS) (Quanterion Solutions Incorporated 
2024), to provide data on the types and 
probabilities of component failures and their 
corresponding failure modes. This approach 
supports risk assessment for the most critical 

system components identified based on the 
severity of their occurrence.  

2. FMEA and FMECA 
Different methodologies are available for 

conducting system reliability analysis, each 
offering unique advantages for obtaining results 
and assessing risks. These methodologies allow 
for the demonstration of how the functional 
structure of system components impacts overall 
system performance, the development of logic-
driven approaches for modeling complex 
systems, and the qualitative and quantitative 
identification of potential failure modes and their 
consequences on the system. 

Understanding the root causes and 
mechanisms underlying BESS failures can help 
design new safety measures and advanced 
monitoring techniques to detect and prevent 
potential problems before they occur. FMEA is a 
key initial step in studying system reliability. By 
integrating quality and reliability into the design 
process from the start of a project, FMEA ensures 
potential issues are mitigated before they occur. 

2.1 Failure Mode & Effects Analysis 
Failure Mode and Effects Analysis (FMEA) was 
first introduced and developed by the United 
States Military in the late 1940s (Sharma and 
Srivastava 2018). FMEA has been widely adopted 
in, e.g., renewable energy systems, aerospace 
engineering, automotive manufacturing, and 
healthcare devices. Its main purpose is to avoid 
the possibility that a new design, process, or 
system fails to achieve the intended requirements 
under specified operating conditions (Sharma and 
Srivastava 2018). Beyond failure identification, 
FMEA also (Aerospace Recommended Practice 
2020): 

� Enhances system safety  
� Assesses the impact of critical and/or 

undetectable failures on the mission.  
� Influences the design to mitigate the impact 

of failures on the final product 
� Assists design engineers in selecting a design 

with a high likelihood of operational success  
� Provides data for developing effective 

maintenance support  

The implementation of FMEA involves key steps 
and concepts (“Concepts - Cameo Safety and 
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Reliability Analyzer 19.0 LTR - No Magic 
Documentation,” 2024) essential for its proper 
application. Figure 1 shows the FMEA flow 
followed in this work.  
The main elements of FMEA include: 

� Failure Mode – A potential way in which a 
component, subsystem, or system may fail to 
perform or deliver its intended function. 

� Effect of Failure – The impact of the failure 
mode on the intended function. 

� Cause of Failure – The factors within the 
design process that might allow the failure to 
occur, typically expressed in terms of 
variables that can be corrected or controlled. 

� Severity – The degree to which the failure 
impacts system functionality. 

� Occurrence – The likelihood of the failure 
occurring. 

� Detection – The ability to detect the failure 
before it affects the system. 

FMECA (Failure Modes, Effects, and 
Criticality Analysis) provides a more quantitative 
approach than FMEA by using failure rate and 
failure mode rate in place of the occurrence rating. 
In either case, however, the true power of FMEA 
is the qualitative information about system and 
component failures. Understanding the failure 
mechanisms of lithium-ion batteries (LIBs) 
within BESSs is essential for evaluating potential 
products obtained from recycling and second-life 
applications, developing processes for their reuse, 
and assessing their effects on environmental 
impacts (Huang et al. 2018). This necessitates a 
thorough investigation of the possible paths to 
failure, rooted in a deep understanding of 
common degradation processes and failure modes 
in LIBs and their components (Hendricks et al. 
2015). 

 
3. Second Life Li-Ion Batteries in BESS 

LIBs show great promise for energy storage 
applications that can stabilize the energy grid 
while reducing CO₂ emissions and other 
environmentally harmful pollutants (Fan et al. 
2020). However, the high market cost of new 
LIBs limits widespread adoption. A promising 
solution is the reconditioning of LIBs (X. Hu et 
al. 2022), which extends their useful life by 

repurposing them for applications with lower 
power density requirements.  

LIBs that no longer meet the requirements 
of electric vehicles (EVs) can be favorably reused 
for other applications, e.g., EV charging stations, 
photovoltaic (PV) systems, frequency regulation 
grid services, and on-grid or off-grid storage for 
renewable energy (Coron et al. 2020)). However, 
concerns remain about whether these reused 
batteries can consistently meet performance 
requirements over time, as they degrade due to a 
large number of physical and chemical 
mechanisms, as well as exposure to 
environmental conditions (Birkl et al. 2017). 

Figure 1. FMEA flow process used in this work. 
 

The reconditioning process may restore 
some performance characteristics but cannot fully 
reverse structural and chemical wear, leading to 
potential failure modes (Shahjalal et al. 2022). 
Solide-electrolyte interphase (SEI) growth 
increases impedance, consumes lithium, and 
reduces conductivity (Birkl et al. 2017). Lithium 
plating and dendrite formation, which can cause 
failures related to electrical shorts in the 
anode/electrolyte zone, occur at low temperatures 
or when excessive lithiation takes place (Liu et al. 
2016) (O’Kane et al. 2022). Poor management of 
charge currents, combined with high 
temperatures, can cause electrode particle 
cracking, potentially leading to physical damage 
(e.g., internal fractures) (Shahjalal et al. 2022). 
Additionally, corrosion of current collectors 
degrades the positive electrode, reducing cathode 
efficiency, increasing resistance, contaminating 
electrolytes, and accelerating self-discharge, 
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ultimately resulting in functional failures or 
degraded battery operation (Gabryelczyk et al. 
2021). 

These degradation mechanisms directly 
contribute to the aging of Li-ion batteries, which 
is typically characterized by capacity loss and an 
increase in internal resistance (X. Hu et al. 2022). 
Capacity loss decreases the total energy the 
battery can store and release, while increased 
resistance reduces its power output. Both 
phenomena are primarily driven by the loss of 
lithium-ion inventory (LLI) and the degradation 
of anode and cathode active materials (LAM). 
The degradation process involves various internal 
aging mechanisms (X. Hu et al. 2022), including 
side reactions within the battery.  

Reconditioning Li-ion batteries for second-
life applications presents several challenges, 
including the safe dismantling of battery packs, 
the complexities of recycling or repurposing 
components, and the accurate assessment of 
battery health through various inspections and 
model-based testing. Additionally, reassembling 
components into new battery products for 
stationary applications requires careful 
consideration of power capability, energy 
capacity, service life, and depth of discharge 
(DOD) (X. Hu et al. 2022). Despite these 
challenges, BESS present a significant 
opportunity for their use, as they can play an 
important role in grids, emergency power supply, 
telecommunications (G. Lacey, G. Putrus, and A. 
Salim 2013) (X. Hu et al. 2022), and other 
applications.  

Combining BESS with second-life batteries 
can reduce the global environmental footprint 
while offering cost-effective energy storage 
alternatives (Steckel, Kendall, and Ambrose 
2021). Ongoing research and development efforts 
aim to enhance the performance and reliability of 
BESS incorporating second-life lithium-ion 
batteries. Current studies focus on understanding 
and mitigating degradation mechanisms, 
optimizing clustering algorithms for battery 
pairing, and developing innovative thermal 
management systems.  
 
4. Failure Mode & Effect Analysis on BESS 
 

To conduct the FMEA for the Battery 
Energy Storage System (BESS), several steps 
were followed, as described in (Aerospace 

Recommended Practice 2020). The process 
consists of defining the system under analysis, 
which involves dividing the system into its 
constituent parts using block diagrams to 
establish the Unit/Assembly (Subsystem) level. 
This approach ensures alignment with the 
system's hierarchy, enabling a structured and 
systematic collection of data (Aerospace 
Recommended Practice 2020). By breaking the 
system into subsystems or units, the FMEA 
process can focus on smaller, more manageable 
components rather than attempting to analyze the 
entire system at once. After the subsystems are 
identified, the components within each subsystem 
are prioritized and assessed. This requires a clear 
understanding of the specific functions performed 
by each component. Understanding these 
functions allows for the identification of potential 
failure modes, their causes, and their effects at 
different levels within the system. 

 
Table 1. Military/Government Severity Ranking 

Criteria table defining each level of severity 
(Aerospace Recommended Practice 2020) 

SEVERITY CLASSIFICATION 

Category Level Description 

1 Catastrophic A failure which can 
cause death or system 
loss. 

2 Critical A failure which can 
cause severe injury, 
major property 
damage, or major 
system damage which 
will result in mission 
loss. 

3 Marginal A failure which may 
cause minor injury, 
minor property 
damage, or minor 
systems damage which 
will result in delay/loss 
of availability or 
mission degradation. 

4 Minor A failure not serious 
enough to cause injury, 
property damage, or 
system damage but 
which will result in 
unscheduled 
maintenance/repair.  
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The process of populating failure mode 
information can be approached in various ways, 
such as leveraging experience with failures in the 
same or similar systems, or incorporating generic 
part failure rate data. For this work, the Reliability 
Online Automated Databook System (ROADS) 
was used to provide failure rate data for common 
components (Quanterion Solutions Incorporated 
2024). The failure modes described in this tool, 
combined with failures identified through 
experience, were the basis for determining the 
potential effects within the system if any of these 
components failed. 

With the identification of the causes, effects, 
and failure modes of the components, the risk 
associated with occurrence is developed as the 
convolution of probability and consequence 
severity. Severity is defined as a measure of the 
impact of a failure mode on the system, mission 
or application (Aerospace Recommended 
Practice 2020). The Military/Government 
Severity Ranking Criteria (Table 1), as described 
in (Aerospace Recommended Practice 2020), 
were used in this work. 

The second aspect of risk involves 
calculating the probability that a specific failure 
mode occurs in a component. To approximate this 
value, the Failure Mode Rate (λ), also known as 
the Failure Mode Criticality Number (Cm), is 
commonly used. It is calculated using the 
following formula: 

Where: 

� p   = the failure rate for all 
failure modes of a specific component. 

� α (Failure Mode Ratio) = the fraction of 
component failures corresponding to the 
failure mode (the probability that the item 
fails in the identified failure mode). 

� β (Failure Effect Probability) = the 
conditional probability that the failure effect 
with the specified criticality classification 
will occur, given that the failure mode occurs. 

� t (Operation time) = the operating time in 
hours or the number of operating cycles. 

As mentioned above, using ROADS 
facilitates the acquisition of some parameters 
required for calculating the Failure Mode Rate. 
This tool provides data to determine α by 

calculating the probability of specific failure 
modes occurring in a component. In addition,  

p can be obtained by dividing the number of 
failed units provided by the tool by the total 
number of tested hours. 

For this study, the Failure Effect Probability 
and Operation Time are both considered equal to 
1, with β interpreted as the actual loss of the unit 
and t as a normalized operational duration.  Once 
the value of λ is obtained, it is used to classify 
each potential failure mode of an element into 
categories (Low, Medium-Low, Medium-High, 
and High) based on the probabilities obtained of 
the failure mode occurring and the consequences 
of its effect. The final step is to determine the risk 
level of the component. This is achieved by 
comparing the values obtained for the severity 
class and λ. 

The Failure Modes and Causes, Item Failure 
Rate, and Failure Mode Distribution Ratio 
columns for each component were obtained from 
the ROADS datasets. If the specific component 
could not be found in the dataset, one with similar 
specifications was used to calculate the Failure 
Mode Rate. The Failure Effects for each 
component were categorized into three levels: 

� Local Effect: Describes the immediate effect 
of the component failure. 

� Next Higher Level: Identifies the 
subsequent level of effects within the system 
if the failure addressed in time. 

� End Effect: Highlights the lastly impacts on 
the system. 

The chain of effects outlined in the Failure 
Effects section is used to determine the severity 
class, where the end effects serve as the reference 
for assigning the final severity value in this 
column. Finally, the combination of the Severity 
Class values with the Failure Mode Rate is used 
to evaluate the risk level of failure for each 
component within the system (1 for high, 2 for 
medium-high, 3 for medium-low and 4 for low 
risks). 
 
5. Results 

The results obtained from performing the 
FMEA are presented in 2. Due to the number of 
components in a complex system such as the 
BESS, Table 2 only displays the subset of 
components contributing to the highest risk.  
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As shown in Table 2, the components 
contributing the most to system risk are not the 
LIBs, but rather the the chillers, Battery 

Management System (BMS) controller, and 
sensors.  

 
 

Table 22. FMEA results showing the highest-risk components.

6. Discussion & Conclusion 
The use of FMEA in this work allowed for 

the identification of potential failure modes for a 
Battery Energy Storage System, the assessment of 

the risks associated with these failure modes, the 
ranking of issues in terms of importance, and the 
identification of some of the detection methods 
within the system to address the most serious 
concerns. Combining it with tools like ROADS 

   Failure Effects    
Failure 
Mode 

ID 

Item Failure 
Modes & 
Causes 

Local 
Effects 

Next Higher 
Level  

End Effects Sev. 
Class 

Prob. 
Class 

Risk 
Leve

l 

4.11 
Fire 

Sensor – 
H2 

Functional 
Failure 

Unable to 
detect H2 

inside 
cabinet 

Fire / 
Explosion 

Loss of 
System; 
Threat to 
human  

1 Med - 
High 1 

4.21 
Fire 

Sensor – 
Smoke 

Shorted 

Unable to 
detect smoke 

in battery 
cabinet  

Fire 
propagation 

inside  
the battery 

cabinet 

Loss of 
system;  

Threat to 
human 
health 

1 High 1 

4.91 

High 
Voltage 
Interlock 

Loop 
(HVIL) 

Improper 
Output 

System 
operates in 

unsafe 
condition 

Short 
circuits;  
Unsafe 

electrical 
environment 

Personnel 
injury;  

Uncontrolled 
operation;  

Unsafe 
shutdown 

2 Med -
High 2 

5.21 Chiller Leakage 

Loss of 
coolant, 
reducing 

heat 
dissipation 

Water 
intrusion in  

cabinet; 
short circuit;  

Reduced 
performance 

Increased 
battery  

temperature, 
possible fire  
in the system 

1 Med -
High 1 

5.22 Chiller Failed to 
Operate 

Improper 
temperature 
regulation; 
increase in 

cabinet 
temperature  

Increased 
temperature  

in cells;  
Increase of 

LLI and 
LAM  

in affected 
batteries;  

Capacity 
fade and 

power fade  
in affected 
batteries; 

Potential fire 
in the 

cabinet 

1 Med -
High 1 

6.21 BMS 
Controller 

Improper 
Output 

Fails to 
manage 
SOC; 

Incorrect 
management 

of temp. 

Improper 
Charging / 

Discharging 
cycles 

leading to 
overheating 

High 
increase of 

Capacity and 
Power fade  
on affected 

batteries 

2 Med -
High 2 

6.23 BMS 
Controller 

Electrical 
Failure 

Unsafe 
system 

operation 

Unsafe 
electrical 

environment 

Damage to 
components, 

cascading 
effects in 
system 

2 Med -
High 2 
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enables using the probabilities that a component 
could fail via a specific mode and cause.  

Despite the BESS utilizing second-life 
batteries, the components identified as having the 
highest risks are those responsible for its 
functionality and maintaining an optimal 
environment, such as the Battery Management 
System (BMS) and the cooling system. These 
components have more than one high-risk failure 
mode identified. Having detection methods for 
the identified failures helps reduce the risk. Based 
on the results of this FMEA, attention should be 
paid to safety-critical components including the 
chillers, BMS controller and various sensors. 
Detection and mitigation methods that can 
prevent or reduce the probability of these failures 
occurring should be investigated. 

FMEA and FMECA have significant 
drawbacks, which affected the performance of 
this work as well. Assembling the necessary 
information for the FMEA process is particularly 
time-consuming, as it requires a strong technical 
basis for the analysis. Detailed knowledge of the 
system is essential, including previous failures 
and their probabilities of reoccurrence. 
Additionally, the process demands familiarity 
with system diagrams, descriptions, failure 
databases, and hazard checklists—ideally 
assigned to a team of three to five experts who 
thoroughly understand the system's operation. 
Furthermore, significant amounts of information 
are needed to quantify an FMECA. At a 
minimum, the system’s design must be well-
understood, along with the various physical and 
phenomenological dependencies between 
components to accurately propagate failure 
modes. Finally, capturing accurate failure rates 
requires either significant system and component 
failure data or reliance on generic component 
databases (e.g., ROADS) at the loss of model 
fidelity. 

7. Future work 
The work completed so far marks the initial 

phase of conducting the intended risk assessment. 
While several critical components for the system's 
functionality have already been identified, 
additional items still need to be added to gain a 
more accurate understanding of the risks of 
component failure. 

The next step in this work will incorporate 
Bayesian Networks (BNs) to produce diagnostic 

and prognostic reliability models of the system. 
Combining FMEA with BNs provides a way to 
mitigate potential risks specific to system failures 
and supports more effective risk management 
strategies (Ruiz-Tagle et al. 2022). Additionally, 
BNs can track how failures propagate throughout 
the system, offering a deeper understanding of 
potential cascading effects. 

Another avenue to explore is verifying 
whether the use of Model-Based Systems 
Engineering (MBSE) could benefit the study. 
Some MBSE software tools can perform 
reliability analysis on system models. Using such 
tools might simplify the process of tracking 
failures and determining whether they could 
trigger other failures within the system. 
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