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This paper presents a methodological framework for tackling the NASA and DNV Challenge on Optimization
Under Uncertainty. The challenge requires designing and calibrating an uncertainty model using limited empirical
data and optimizing design variables under uncertainty. We propose an integrated approach based on Bayesian
experimental design, emulators, efficient computational tools, and advanced calibration techniques. Parametric and
non-parametric uncertainty models are compared, calibrated using strategies incorporating likelihood-free KNN and
discrepancy-based filtering methods, imprecise probability and likelihood-based ABC inference using Transitional
Markov chain Monte Carlo. Uncertainty-based optimization is also performed by different approaches, including
grid search, genetic algorithms, and two-level stochastic optimization using Bayesian techniques supported by
surrogate models. The framework refines the uncertainty model by systematically updating the distributions and
selecting optimal experimental conditions to enhance learning efficiency. Our results highlight the efficacy of the
approach in balancing performance, reliability, and risk-constrained objectives that are generally applicable in UQ-
driven decision-making problems.
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1. Introduction

The challenge problem, detailed in Agrell et al.
(2025), concerns the behaviour of a system

Y∗(xa, x
∗
e, xc, s) : R

8 → R
T×ny (1)

where inputs include: xa ∈ [0, 1]3 aleatoric vari-
ables with unknown distribution, epistemic pa-
rameters xe ∈ [0, 1]2, unknown but fixed, control
variables xc ∈ [0, 1]3, and a seed s ∈ N for
the random number generator. The input vector
X = (xa, xe, xc, s) applies to a simulation model
Y(X) that approximates the true system Y∗, pro-
duces ny = 6 time dependent outputs, evaluated
over T = 60 timesteps. Responses are indexed
by I1 = {1, 2, 3} if performance-related and by
I2 = {4, 5, 6} if reliability-related.

Two main problems must be tackled: 1) model
calibration and uncertainty quantification; and 2)
robust design under uncertainty. The former prob-
lem focuses on the definition of an uncertainty
model, (fa, E), where fa is the density function
for xa and E a set supposedly containing the
true x∗

e , while problem 2 focuses on the identifi-
cation of optimal designs compromising between
reliability, risk, and performance. The challenge
allowed nq = 10 queries of the model by selecting
xc,q and returning K = 100 samples, forming
an empirical dataset, Demp

q = {{yk}Kk=1, xc,q} ∈
R

T×ny×K+3 in addition to an initial dataset Demp
0 .

The worst-case performance for given xc is
defined as follows:

J(xc) = min
xe∈E

E
xa∼fa

[j(X)] (2)
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where j(X) =
∑T

t=1

∑
i∈I1

yi (X, t)Δt is the
total performance and Δt = 0.01695. The worst-
case probability of failure with a limit state func-
tion h = min

i∈{1,2,3}
gi(X) is defined as follows:

Pf (xc) = max
xe∈E

P [h < 0] , (3)

and the worst-case tail expectation (risk) as:

Rf (xc) = min
xe∈E

E [h | h ≤ 0] . (4)

Note that the worst-case risk is a lower bound
because this tail expectation is always negative. A
detailed description of the challenge can be found
in the challenge’s githuba.

2. Proposed approach

The main goal of Problem 1 is to find an uncer-
tainty model (UM), (fa, E) where fa is a PDF for
the aleatory variables xa and E is a set bounding
the epistemic vector xe, while Problem 2 focuses
on the identification of optimal xc designs com-
promising between reliability, performance and
risk. The general workflow is as follows.

(1) q ← 0

(2) Calibrate UM using Demp
q

(3) Optimization of xc

(4) Optimal design of experiment
(5) Multi-loop uncertainty propagation
(6) q ← q + 1 and repeat from point 2

We proposed using different techniques for
cross-checking and to increase confidence in the
results.

2.1. Uncertainty models and calibration

The uncertainty models considered are:
UMknn consisting of a non-parametric kernel

density estimator (KDE) for fa and a convex hull
for E providing tractability for robust optimiza-
tion, e.g., Gorissen et al. (2015). A KNN-based
calibration strategy and a filtering approach are
proposed to identify suitable input realizations.
UMpeel is built with an imprecise model inver-

sion strategy, see de Angelis et al. (2021), that

ahttps://github.com/dnv-opensource/UQ-Challenge-2025/

is used to calibrate the model and to produce
posterior samples of fa and E. The model is non-
parametric, prior- and likelihood free and returns
a credal set of probability mixtures that bound the
target distribution. Posterior samples are gener-
ated from an optimal mixture distribution within
the credal set.
UMbeta is a second-order parametric model

with Beta marginals B(xai ; θ) and a Gaussian
copula parametrised by ρ to model the stochastic
dependence. This model augments the epistemic
space to e = {θ, ρ, xe}, see e.g. Gray et al. (2022).
A bivariate imprecise structure can be derived
from fa by representing epistemic uncertainty in
the parameters through intervals.

Staircase density functions (Crespo et al., 2018)
have also been explored, showing promising pre-
liminary results but due to space constraints are
not discussed further in this paper.

The calibration strategies explored are:
K-nearest neighbourhoods (KNN): This data-

driven calibration and a filtering approach is based
on a discrepancy vector δ = δ(xa, xe, xc), i.e.
difference between output features in the empir-
ical data and the simulated model response. The
selected features are the j, gi and additional fea-
tures obtained using a conditional variation auto
encoder. We initialise non-informative prior distri-
butions f(xa, xe) ∼ U([0, 1]5) for both aleatory
variables and epistemic parameters. Then, a data
set Dsim is generated from it and used within the
KNN filtration process as follows:

Dknn
q ← arg min

(xa,xe)∈Dsim
‖δ(xe, xa, xc)‖2, (5)

where for each sample in the empirical Demp
q , k

nearest neighbourhoods are obtained by minimis-
ing the discrepancy on a reduced set of outputs in-
cluding j(X), gi(X) and additional features. The
procedure yields k ×K input pairs, i.e., Dknn

q =

{(x(i)
a , x

(i)
e )}k×K

i=1 . The data in Dknn
q is then used

to fit the UMknn by aggregating samples for the
query steps q = 0, 1, 2.... KDE is fitted on the
xa samples, and the convex hull is constructed
over the intersection of the filtered xe points. The
epistemic points are selected based on a discrep-
ancy vector δq(xe) = rsim(xe) − remp

q , where the
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ratios r = (y4

y5
, y4

y6
, y5

y6
) are used for this because

invariant with respect to xa, s, making them very
suitable for isolating the effects of xc, xe. An η-
level set is then defined for each q = 1, .., nq as

Eη,q = {xe : ||δq(xe)||∞ ≤ η}, (6)

where η is a threshold discrepancy on the infinity
norm. A sampling algorithm will approximate the
set (6) as Ehull

η,q , which includes all samples xe

whose outputs are closest to the empirical data at
step q. Then, a intersection hull is computed as
Ehull

η = ∩qE
hull
η,q by aggregating sets from all the

available empirical datasets.
Data-peeling algorithm UMpeel. A stack of

nested rectangular sets is built on the observa-
tions. The observations at the boundary (support
vectors) are progressively removed or “peeled
away” to build the stack of nested sets; see, e.g.
de Angelis et al. (2021). Each rectangular set
is assigned an enclosing lower probability using
scenario theory, i.e. solving a chance-constrained
program. The inverse problem is then addressed
using uniform samples in [0, 1]5. Upon propaga-
tion, uniform samples are assigned membership
to each of the enclosing sets. The resulting stack
of nested sets in the input space is a calibrated
consonant Dempster-Shafer structure whose basic
beliefs are set equal to the scenario lower prob-
abilities. Posterior samples are finally generated
from a mixture distribution within the credal set
identified by the calibrated consonant structure.

Approximate Bayesian Computation (ABC)
see e.g. Beaumont (2019), are well established
methods often used to approximate posterior dis-
tributions using a likelihood, i.e., by comparing
simulated data with measurements using stochas-
tic distances. For the calibration, we consider
ABC approaches combining transitional Markov
Chain Monte Carlo (TMCMC) (Ching and Chen,
2007)with a standard Pseudo-Likelihood:

L(xe|xc) ∝ exp

(
−δ(xe, xa, xc)

ε

)
(7)

and with approximate likelihood obtained from a
latent-space model Lee et al. (2024):

L(xe|xc) ∝
∫
Z

qφ(z|Xobs) · qφ(z|θ)
p(z)

dz. (8)

This calibration returns UMbeta.

2.2. Optimisation

Challengers must find a design xc that maximizes
the worst-case J while satisfying stringent relia-
bility (ε = 10−3, 10−4) and risk (β = −300)
constraints. The selection of the control points are
obtained with the following strategies:
Grid-search approach is used to explore the 3-
dimensional design space, where ngrid is the num-
ber of designs in the grid and P is a grid of
solutions. The set of candidates has been evalu-
ated using the provided simulator and a Neural
Network based surrogate model and fitness scores
computed, see e.g. equation (2). For the perfor-
mance assessment, a nested loop MC strategy is
used as presented next.

Nested stochastic optimisation approach:
The multi-objective optimisation problem is de-
fined on the objective bounds as shown in Eqs. (2-
4). Bayesian optimisation is adopted in the outer
loop to find the next most promising design xc,q to
query the real system, also with the aid of an ac-
quisition function. A Gaussian process is directly
mapping towards the bounds (the lower bound in
this example), J(x

(i)
c ) ≈ GP(x

(i)
c ). The inner

loop is based on genetic algorithm (GA) which
is employed to search for the bounds of objective
functions subject to the epistemic uncertainty e ∈
E, as denoted in Eq. (2).

Conservative chance constraint consists in
lowering safety limits by a defined quantity V and
checking Pf,V = P[h − V < 0]. If a design
meets these stricter conditions, it is guaranteed
to satisfy the original constraints, though possibly
with reduced performance. This greatly simplified
the (reliability) comparison of different xc since
reduced number of samples are required to esti-
mate Pf .

2.3. Optimal Design of Experiment
(DOE) and data acquisition

Two approaches identify experimental design can-
didates xc,q by solving an optimal DOE problem
x∗
c,q = argmaxαDOE(xc), where αDOE(xc) is

an acquisition function. The first approach max-
imises a weighted combination of expected infor-
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mation gain and performance scores, as defined
by Equations (2) to (3). This balances both op-
timisation and information gain criteria, e.g., Li
et al. (2024). The second approach uses Bayesian
optimization for second-level optimization. A key
advantage of Bayesian optimization is its acqui-
sition function, α(xc,q), which identifies the most
promising query points for evaluation on the real
system. In this analysis, we tend to be more ex-
plorative and parametrise acquisition functions to
discover the uncertain xc space for more informa-
tive refinement of the UM in the calibration stage.

2.4. Surrogate models

A feed-forward neural network (FFNN) was
trained on a synthetic dataset of one million uni-
formly sampled inputs X = (xe, xa, xc) ∈ [0, 1]8

and random integer seeds, with corresponding
model responses y. The model was trained to
predict just the expectation operator in (2) and
the reliability functions (g1, g2, g3); this reduces
the dimensionality of the output while being func-
tional to the calibration/optimization process. Af-
ter hyperparameter tuning, the final FFNN model
(with 4 layers, 512 neurons per layer, and a learn-
ing rate of 0.005) was compared to a linear regres-
sor. A normalised Root-mean-square deviation
(nRMSE) measures the quality of FFNN models:

nRMSE(y, ŷ) =

√
1
n

∑n
i=1(yi − ŷi)2

1
n

∑n
i=1 |yi|

(9)

Specifically, FFNN achieved a nRMSE of 0.05
for estimating J , compared to 0.3 for the linear
model. For estimating g3—the most challenging
among the gi—the FFNN had a nRMSE of 0.12,
while the linear model achieved 0.5.

Variational auto-encoder (VAE) and Condi-
tional VAEs, have also been used to estimate
Eq. (8) and for features extraction in combination
with the KNN calibration algorithm (5). Specif-
ically, enhanced performance is observed by fo-
cusing on the most informative encoded output
features, conditioned on the given xc,q .

3. Results - problem 1

3.1. Preliminary analysis

One-at-a-time sensitivity analysis allowed to iden-
tify a pattern of behaviour for xa1 and xa2, that is
shown in Table 1. It is found that for xa1 = 0 all

Table 1. Effect of increasing xa1 (xa2 = 0) on the mean
model output of y4, y5, y6.

xa1 mean(y4) mean(y5) mean(y6) var(∀y)
0.0 0.0 0.0 0.0 0.0
0.2 138.33 171.22 77.81 0.0
0.6 1821.45 913.54 851.99 0.0
1.0 6620.74 4663.74 1979.36 0.0

model outputs are zeros irrespectively of the val-
ues of the other parameters. Whatever the value of
(xe, xc), an increase of xa1 produces an increase
in the mean of y4, y5 and y6, while xa2 = 0 sets
the variance of the model output to zero.

3.2. Calibration

For the UMknn, using the approach described
in Section 2.1 and progressively reducing the η

threshold a KDE distribution for fa and convex
hull set for E are identified. These are computed
filtering 50,000 simulations, uniformly sampled
in (xe, xa), and conditioned on (xc,q). Figure 1
shows the individual hull sets, and the intersection
hull at step q = 7. Table 2 shows bounding boxes
for different α levels, with no points remaining
for very small thresholds α, possibly due to a
discrepancy between local and remote simulators.
This approach efficiently constrains epistemic un-
certainty without probabilistic assumptions. Fig-
ure 2 shows a data sets obtained from the KNN
calibration procedure for the first 4 empirical data
sets. The procedure yields a best guess xe =

(0.334, 0.596, 0.378) for a low η.

Table 2. The intersection hull Eη as intervals pro-
jected on the 3 epistemic components at stage q = 7.

η xe1 xe2 xe3

0.1 [0.084, 0.650] [0.000, 0.891] [0.000, 0.999]
0.02 [0.151, 0.399] [0.445, 0.687] [0.003, 0.810]
0.01 [0.221, 0.377] [0.478, 0.639] [0.007, 0.630]
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Fig. 1. Filtration process on the epistemic set at stage
q = 7 and η = 0.02.

Fig. 2. An example of KNN calibration results on
Demp

q at stage q = 0, 1, 2, 3.

For UMbeta, the parameters of the imprecise
Beta model, i.e. θ and ρ, are updated sequen-
tially, where the posterior PDF serves as the
prior for the next with Hamiltonian Monte Carlo.
A 95% highest density interval is used to de-
rive the bound the parameter while a uniform
prior employed for the updating. At q = 10,
the resulting posterior bivariate p-box (UMbeta)
for xa is xa1 ∼ B([2.44, 2.45], [6.64, 6.69]),
Xa2 ∼ B([1.22, 1.23], [4.17, 4.19]), and ρ =

[−0.21,−0.10]. Fig. 3 shows the predictive p-box
from the calibrated models for the y component
and the empirical data for q = 10 and at t = 20

showing the ability to enclose the observed data.

3.3. Comparison

Estimation of the tightest prediction interval
bounds by given α values are shown in Table 3.

Figure 4 compares the set E obtained for three
UM. For UMbeta, the set E is selected by slicing

Fig. 3. Predictive p-box at t = 20 from UMbeta
(area) and the empirical data for xc,10 (in green).

Table 3. “Prediction intervals” of response yi
obtained using different UMs for Problem 1.

UM Output α = 0.95 α = 0.999

y1, y2, y3 [0.00 3.35] [0.00 3.35]
peel y4 [0.05, 605.8] [0.052, 739.1]
peel y5 [0.037, 437.9] [0.037, 533.0]
peel y6 [0.020, 233.7] [0.020, 284.0]
knn y4 [0.0, 835.9] [0.0, 1056.4]
knn y5 [0.0, 407.5] [0.0, 518.9]
knn y6 [0.0, 345.2] [0.0, 440.9]
beta y4 [20.2, 1197.6] [0.6, 1659.5]
beta y5 [13.2, 777.2] [0.4, 1084.1]
beta y6 [6.6, 389.3] [0.2, 542.4]

the posterior based on high density interval as de-
scribed in Section 3.2 , resulting in a box-shaped
region (shown in green). For the two other mod-
els, the orange and blue markers indicate Ehull

.035

obtained for a threshold η = 0.035 and a smaller
Ehull

.005 , respectively. Note that the axes are much
tighter than the initial interval [0, 1], hence all
the calibration approaches successfully reduced
the epistemic uncertainty substantially. Also, the
calibrated predictions are all consistent as they
show a non-empty intersection, likely containing
the true x∗

e .

4. Results - problem 2

We performed a grid search over the design space
xc ∈ [0, 1]3, evaluating the worst-case J , fail-
ure probability Pf , and risk Rf according to the
definition provided in the challenge description,
the calibrated UMs and using the FFNN surrogate
model to speed up the computation of the worst-
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Fig. 4. Sets E from different UMs, uniform samples
within the sets and best epistemic guess.

case bounds. Figure 6 shows the results obtained
from a dense grid search with ngrid = 303 points.
Each row presents 2D projections of xe. From
left to right, the columns show the worst-case
risk, the worst-case performance, and the worst-
case failure probability. The designs at each query
step are indicated as red dots and labelled accord-
ingly. The design xc,7 has very high reliability
(deep blue area in the right column), at step xc,1

high performance low reliability, at step q = 5

compromise solution (reliable and high objective
function). The corresponding controls x�

c are in
Table 4.

With the refinement of the uncertainty models
at step q = 10, the nested stochastic optimisa-
tion approach has a narrower E to search. In the
second level, the optimiser guides the search for
optimal control, while in the first level, the genetic
algorithm is set to explore the epistemic E space
to find the endpoints of the objectives. In solving
the ε− constrained and risk-based design, an addi-
tional penalty term is added where in compliance
with the constraints. To ease the comparison and
discussion, we will focus our selection for prob-
lem 2 on the 10 designs xc,q . Hence, the results of
this optimisation are not reported here and will be
added to future extensions.

For the selection of the 5 optimal designs, we
decided to limit our selection to the 11 designs
for which empirical data are available. This fa-
cilitated the comparison among different models
as shown in Fig. 5. Hence, the design q = 1

(see Table 4) is the chosen performance-based
design because it achieved the highest worst-case
performance score regardless of reliability. The

reliability-based design is q = 7 due to its superior
performance in minimizing the worst-case failure
probability with the CP bound on the empirical
data equal to 0.0362, and the lowest failure prob-
ability (0.020) under the condition of V = 500.
This design is also favourably located in a low-
probability region, as demonstrated by the contour
plot of Fig. 6 (right column). Furthermore, within
the chance-constrained framework, designs q =

9 and q = 10 have been selected representing
different levels of conservativeness. Design q = 9

is less conservative, offering a balanced compro-
mise between performance and reliability. Design
q = 5 is the risk-based design, selected taking
into account the potential risks while ensuring
competitive performance. The risk-based design
is chosen balancing high performance with risk
reduction.

4.1. Comparison

Table 4 summarizes the results for the xc,q along
with the corresponding empirical estimates of
performance objective, system failure probability,
and confidence bounds for a 0.95 level, i.e., con-
centration bounds on expectations and Clopper-
Pearson upper bound on Pf . Table 5 present the
propagated intervals for UMknn, estimated up-
per bounds on Pf and Pf,V are reported. It is
worth noting that the failure probability bounds
appear to adequately capture the empirical esti-
mates across the cases considered. However, in
some instances, the empirical mean of the perfor-
mance metric lies outside the predicted bounds,
an observation that will be further investigated in
future work.

5. Conclusions

An integrated framework for uncertainty quan-
tification and design under uncertainty has been
presented. The framework relies on different ap-
proaches for cross-checking the results and gain
confidence in the proposed solutions. Surrogate
models are essential to the framework given the
greedy algorithms for Bayesian optimisation and
double-loop uncertainty propagation. The deploy-
ment of multiple calibration strategies has signifi-
cantly strengthen our confidence in the calibrated
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Fig. 5. Comparison between UMpeel (Ehull
.02 ), UMknn (Ehull

.035 ) with 200 aleatory 104 epistemic samples and
UMbeta with 103 aleatory samples. Results of the first two are evaluated using the simulator while the third
evaluated using surrogate. Intervals for E[j] and E[h] for q = 0, .., 10 are superimposed to the 95% confidence
intervals on the empirical (queried) data displayed with the gray shaded areas.

Fig. 6. Contour plots of worst case scores (risk in column 1, performance column 2 and probability of failure
column 3) as function of the xc. The locations of the designs xc,q , steps q = 0, 1, 2, .., 10, are also presented.
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Table 4. Main statistics for the empirical data. All intervals are 95% confidence intervals. The table
shows the expected performance Ĵ , reliability response Ê[h], estimated failure probability P̂f , its
99% Clopper-Pearson (CP) upper bound, and ratios r. CC indicates a chance constrained design.

q xc,q Ĵ P̂f (P
CP
f ) Ê[h] y4

y5
, y4
y6

, y5
y6

Tag

0 (0.53 , 0.67 , 0.50) [5.98, 7.51] 0/100 (0.0362) [833.2, 876.7] 2.03, 2.41, 1.19 Baseline
1 (0.05 , 0.42 , 0.63) [7.46, 8.91] 1/100 (0.0545) [777.5, 836.9] 1.75, 3.43, 1.96 Performing
2 (0.16 , 0.37 , 0.58) [5.88, 7.50] 0/100 (0.0362) [806.1, 862.5] 1.43, 2.74, 1.92 -
3 (0.17 , 0.52 , 0.69) [6.91, 8.37] 0/100 (0.0362) [804.7, 856.7] 1.91, 3.17, 1.66 -
4 (0.37 , 0.95 , 0.73) [7.19, 8.47] 0/100 (0.0362) [813.5, 853.1] 0.75, 1.63, 2.18 -
5 (0.67 , 0.84 , 0.67) [7.47, 8.89] 0/100 (0.0362) [781.7, 830.1] 1.41, 2.96, 2.11 Risk-Con.
6 (0.12 , 0.31 , 0.67) [6.76, 8.23] 0/100 (0.0362) [788.4, 839.5] 1.27, 2.87, 2.26 -
7 (0.43 , 0.63 , 1.00) [6.55, 7.99] 0/100 (0.0362) [862.8, 897.2] 1.39, 2.60, 1.88 Reliable
8 (0.99 , 0.01 , 0.99) [5.03, 6.68] 2/100 (0.0704) [766.2, 861.2] 1.17, 4.63, 3.96 -
9 (0.32 , 0.52 , 0.70) [7.09, 8.41] 0/100 (0.0362) [823.7, 868.8] 1.54, 2.29, 1.48 CC ε = 10−4

10 (0.13 , 0.80 , 0.67) [7.39, 8.80] 0/100 (0.0362) [779.0, 835.9] 1.53, 3.06, 2.00 CC ε = 10−3

Table 5. Propagated intervals for UMknn, using
Ehull
.035 , 104 epistemic and 200 aleatoric samples.

q J ∈ P f P f,500 E ∈
0 [6.49, 8.04] 0.005 0.075 [789.5, 853.8]
1 [6.65, 8.26] 0.020 0.075 [775.0, 836.5]
2 [6.66, 8.24] 0.010 0.085 [767.1, 836.4]
3 [6.61, 8.18] 0.010 0.085 [803.2, 862.6]
4 [6.42, 7.94] 0.010 0.050 [775.6, 843.9]
5 [6.68, 8.26] 0.010 0.075 [770.4, 840.1]
6 [6.66, 8.25] 0.010 0.085 [762.4, 833.5]
7 [6.26, 7.75] 0.000 0.020 [857.1, 901.2]
8 [5.47, 7.21] 0.075 0.140 [700.6, 830.6]
9 [6.46, 8.02] 0.000 0.045 [811.0, 868.4]

10 [6.68, 8.27] 0.015 0.075 [778.3, 845.4]

UMs. These include an efficient KNN method
combining hulls and kernel-density estimation,
a rigorous imprecise-probabilistic data peeling
method, and a second-order Bayesian updating
method. Future work will concentrate on electing
the best design based on the whole set of models.
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