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Flooding is one of the most prevalent natural disasters worldwide and is increasingly recognized as a consequence 
of climate change. Floods cause substantial economic damage and, moreover, endanger human lives. We present a 
Deep Reinforcement Learning-based approach, using a centralized Proximal Policy Optimization (PPO)-based 
agent to coordinate a UAV swarm for the systematic identification of locations with a high likelihood of human 
endangerment. The agent acts adaptively based on the real-time coverage state, which is crucial for effective 
inspections of affected areas under a time constraint. We incorporate flood locations and areas of interest—defined 
by damaged infrastructure—into the decision-making process. We also present a method for extracting relevant data 
from satellite imagery, based on a previous flood event in the Ahr Valley in Germany in 2021. Our results 
demonstrate increasing effectiveness in the coverage of diverse flood scenarios. Further advancements are needed 
before real-world deployment, but the collected data could ultimately be crucial for planning rescue operations and 
mitigating human risks, especially during the initial disaster response phase. In addition to optimizing coverage 
efficiency, we highlight key operational risk factors in UAV swarms, such as unpredictable environmental 
conditions, communication disruptions, and energy constraints, which are essential considerations for ensuring 
reliable UAV swarm performance in real-world flood scenarios. 
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1. Introduction 
Flooding is one of the most frequent and 
destructive natural disasters, exacerbated by 
climate change and rapid urbanization. The 
economic damage and human risks associated 
with floods necessitate efficient and scalable 
coverage systems. Unmanned Aerial Vehicles 
(UAVs) have emerged as a viable solution, 
offering rapid data collection capabilities for 
disaster response. The deployment of UAV 
swarms allows for large-scale scanning of flood-
affected areas (Tubis et al., 2024). The increasing 
occurrence of flash floods, such as the 
catastrophic Ahr Valley flood in Germany 2021, 
has demonstrated the need for fast and accurate 

assessments of flooded regions. Traditional flood-
assessment methods rely on satellite imagery and 
ground-based observations, which often fail to 
provide real-time, high-resolution data. In 
contrast, UAV-based approaches can deliver 
timely and detailed information to aid rescue 
operations and mitigate risks. In recent years, the 
advancement of UAV technology has 
significantly enhanced flood coverage, enabling 
rapid and precise real-time data collection, which 
is crucial for effective crisis management. 
However, coordinating UAV swarms in 
challenging environmental conditions, such as 
unpredictable weather or communication 
disruptions, presents significant challenges that 
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require advanced management strategies and 
adaptive control algorithms. In this paper, we 
highlight operational risk factors in UAV swarms 
and possible solutions. Additionally, we provide 
an example of the optimization of time-limited 
UAV swarm flights in flood regions using 
Reinforcement Learning. The agent is trained to 
act adaptively based on the online coverage state, 
utilizing data from a historical flood event in the 
Ahr Valley in 2021.  

2. UAV Swarm Deployment for Flood 
Response: Hardware, Risks, and Case Studies 
The effectiveness of UAV swarms in flood 
response depends on multiple factors, including 
hardware capabilities, sensor integration, and data 
processing methods, which will be discussed in 
the following sub-chapters. 

2.1. Hardware Considerations 
Effective flood response using UAV swarms 
relies on a diverse set of sensors, each 
contributing to situational awareness, hazard 
assessment, and rescue operations. Different 
sensors can be used in UAV swarms in the context 
of flood response to collect real-time data. These 
include:  

� LiDAR Sensors – Used often for topographic 
mapping and water level assessment, 
enabling precise 3D flood modelling. It is 
particularly valuable for high-resolution 
elevation mapping and large-scale flood 
analysis (Trepekli et al., 2022). 

� Thermal Cameras – Allow detection of trap-
ped individuals and warm bodies, improving 
rescue operations (Thiyagarajan et al., 2024). 

� Multispectral and RGB Cameras – Used for 
classification problems (Zheng et al., 2022). 

� Depth Sensors – Help estimate flood depth 
and flow velocity, supporting real-time 
hazard assessment. These include various 
technologies such as sonar (Frias 2023), 
structured light sensors, and stereocameras, 
which can complement LiDAR for more 
localized or underwater depth measurements 
(Pohl 2020). 

� Hemispherical Cameras – Provide 360° 
situational awareness, enhancing UAV 
navigation and decision-making in complex 
urban areas (Rehman 2022). 

Power efficiency is a key challenge in UAV 
deployment. The flight time of UAVs depends on 
factors such as battery capacity, payload weight, 
and environmental conditions. In addition to 
improving efficiency in terms of aerodynamics, 
propulsion systems, and the use of lightweight 
materials, a potential (and actively researched) 
solution is hydrogen fuel cell-powered UAVs, 
which could offer longer flight times, making 
them ideal for long-range flood mapping 
(Saravanakumar et al., 2023). 

Hydrogen-powered UAVs have the 
advantage of higher energy density compared to 
traditional lithium-ion batteries, allowing for 
extended flight durations and increased 
operational range. This makes them particularly 
useful in large-scale disaster response scenarios, 
where continuous aerial monitoring is required. 

Quadcopters generally have shorter flight 
times than their fixed-wing counterparts, but they 
are essential for conducting detailed inspections 
and scanning, especially when the mission 
requires hovering.  

2.2. Risk Factors and Mitigation Strategies 
The primary risk factors affecting UAV swarm 
operations include: 

� Uncertainty in Environmental Conditions: 
Flooded areas present unpredictable 
conditions, such as sudden changes in water 
levels, strong wind currents, and debris, 
which can impact UAV flight stability and 
navigation (Surmann et al., 2022). 

� Obstacle Avoidance and Collision Risk: 
UAVs operating in swarms must maintain 
safe distances to prevent collisions. Multi-
UAV collision avoidance algorithms could 
integrate reinforcement learning-based 
policies to dynamically adjust flight paths 
(Garg A. and Jha S., 2023). 

� Energy Constraints and Operational Failures: 
The endurance of UAVs is limited by battery 
capacity, and their operational time must be 
optimized for maximum area coverage. 
Strategies such as hybrid UAV deployment 
(fixed-wing and quadcopters) help balance 
endurance and manoeuvrability (Sonkar et 
al., 2022). 

� Communication Disruptions: Maintaining 
reliable communication between UAVs and 
the ground control station is essential for 
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coordination. Failures in data transmission 
can lead to inefficient coverage and 
redundant flight paths (Chandran 2024). 

Possible mitigation strategies include:  

� Adaptive Trajectory Planning: UAVs must 
dynamically adjust their flight paths in 
unpredictable flood environments to 
maintain efficiency and avoid obstacles. 
Various methods, including reinforcement 
learning (RL), heuristic algorithms, and 
model-based optimization techniques, can 
enhance real-time decision-making and 
improve UAV swarm coordination (Garg 
2023). These approaches enable drones to 
respond autonomously to environmental 
uncertainties, ensuring optimal area 
coverage. 

� Redundancy and Fault-Tolerant Systems: 
Implementing backup communication 
channels and redundant UAV units can 
prevent mission failure in the event of system 
malfunctions (Tubis et al., 2024). 

� Hybrid UAV Swarms for Enhanced 
Coverage: Combining fixed-wing UAVs for 
long-range mapping with quadcopters for 
detailed inspections improves overall 
efficiency and mitigates energy limitations 
(Tubis et al., 2024). 

� Risk-Based Mission Planning: Pre-mission 
simulations using historical flood data and 
hydrological models help in planning UAV 
swarm deployment, reducing uncertainty in 
real-time operations (Chandran 2024). 

In this paper, we use Reinforcement Learning as 
an adaptive method for trajectory optimization 
under the consideration of area coverage.  

2.3. Meuse and Rhine floods in July 2021 
In July 2021, extreme precipitation amounts 
resulted in severe flooding across the western 
European countries Belgium, Luxembourg, 
Germany and the Netherlands. The two German 
federal states North Rhine-Westfalia and 
Rhineland-Palatinate were particularly affected 
and recorded more than 180 casualties and a large 
amount of flood damage. The flood disaster 
resulted from the extreme extent of an underlying 
meteorological event that caused up to 150 litres 
of precipitation per square meter within 24 hours. 
The situation was aggravated by the fact that the 

soil in the affected regions was not able to absorb 
the amount of recorded precipitation due to 
several phases of repeated heavy rainfall in the 
preceding months. In the Ahr catchment the 
topography characterized by narrow valleys and a 
pronounced increase in altitude over a 
considerable distance contributed to the severe 
extent of the flood event. Due to the destruction 
of numerous bridges and infrastructure, access to 
affected area was rendered difficult and rescue 
and evacuation measures were assisted from the 
air (Tradowsky 2023). The difficulty of accessing 
areas affected by natural disasters raises the 
question of whether drones can be used in the 
future to cover flooded areas and are therefore 
suitable for supporting rescue operations. 

3. Problem Description  
In order to obtain an overview of the situation on 
the ground and being able to initiate rescue 
measures as quickly as possible, the aim of this 
work is to investigate whether a swarm of drones 
can be guided to entirely cover an area affected by 
flooding. Reinforcement learning is applied to 
find the optimal trajectories that maximize the 
covered area in a finite amount of time. The 
benefit of reinforcement learning-based guidance 
is that the drones are able to adapt to unknown and 
dynamic environments without the need for 
information about the situation in advance. A 
model of the environment simulates the flight 
dynamics that can be controlled to guide the 
drones over a region affected by flooding. The 
drone’s location is specified in a grid-world 
environment that provides information about cells 
that are either affected by a flood or not. A 
number of  drones is employed to 
demonstrate results for the underlying problem. 

3.1. Flood Environment 
The area coverage problem is addressed based on 
data about the severe floodings that affected parts 
of Germany in July 2021. During the emerging 
floods information about the spatial extent as well 
as a mapping of the damage grade in the affected 
regions was collected using Copernicus satellites. 
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The data is freely accessible and provided by the 
European Union’s Copernicus Emergency 
Management Service (EMS) (Copernicus EMS 
2021). A significant amount of precipitation and 
subsequent damage incurred due to flooding has 
been observed in the Ahr catchment area located 
along the Ahr river in the German federal state 
Rhineland-Palatinate. The Copernicus data on 
flooding in the Bad Neuenahr-Ahrweiler area 
covers the areas along the Ahr river from the 
district Ahrdorf in the German federal state North 
Rhine-Westphalia at the southernmost point to the 
town Sinzig at the northernmost point of the Ahr, 
as well as the areas along the Ahr tributary 
Adenauer Bach. The data depicts the static flood 
scenario at particular days, whereby in this work 
the data about the flooding situation as of the 20th 
of July 2021 is employed.  

In order to derive maps that depict the 
flooded areas in a grid world environment, the 
information about the geographic coordinates of 
the boundaries of flooded regions is transformed 
to Universal Transverse Mercator (UTM) 
coordinates. Maps of the size 1 km  1km are 
extracted in 1 km intervals along the Ahr river 
lines and are subsequently discretized in a grid 
with resolution of  m. The discretised 
maps contain information about the presence of a 
flooded or non-flooded cell and represent floods 
of various shape and size.  

The maps are superimposed with 
information on damaged or destroyed buildings in 
the populated areas of the flooded areas. For every 
cell containing at least one damaged building, 
adjacent cells in a surrounding area of 100 meters 
are also considered to be affected. Cells that 
indicate either floodings or damaged 
infrastructure are denoted target cells in the 
following and are treated equally in their 

information. The process of the generation of 
flood grid maps for the area Bad Neuenahr-
Ahrweiler is depicted in Fig. 1.  

3.2. Flight Dynamics  
To reduce the complexity of the fixed-wing UAV 
flight dynamics, the drones are assumed to fly at 
a constant altitude  m and with constant 
speed  m/sec with respect to a fixed, 
inertial reference frame. A low-order model is 
employed that approximates the flight dynamics 
using simple kinematic equations and without 
considering aerodynamic and control forces that 
act on the vehicle in different flight phases. The 
relationship between the aircraft’s bank angle  
and course angle change  in the absence of wind 
or sideslip is given by the equation for the 
coordinated turn as 

 (1) 
 
where  represents gravitational acceleration 
(Beard, R. and T. Mclain 2012). The position 
change of the vehicle along the  and  axis of the 
inertial reference frame results as  

 (2) 

 
In order to derive the drone’s position and course 
angle under specified initial conditions, the 
ordinary differential equations can be solved at 
discrete timesteps using the Euler method.  

 

 

Fig. 1. Flood grid map generation for the flood situation as of 20th of July 2021 in Bad Neuenahr-Ahrweiler, based 
on data from the European Union’s Copernicus Emergency Management Service (Copernicus EMS 2021) 
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3.3. Field of View  
To map the environment and gather information 
about the emergency situation on the ground, the 
drones are equipped with cameras. The covered 
area of the camera on the ground is dependent on 
the angle of the cameras Field of View  and 
the flight altitude  (see Fig. 2). Assuming that the 
camera is always facing downwards, and the 
drone flies with a pitch angle of  deg, the 
coverage area on ground is a square defined by the 
width :  

 
 

(3) 

 
In this work the angular Field of View is specified 
to  deg.  

 
Fig. 2 Field of View and covered area on the ground 

4. Partially Observable Markov Decision 
Problem (POMDP) 

Reinforcement Learning Problems in general can 
be formalized using a Markov Decision Problem 
(MDP). The basic idea of the MDP is to capture 
the most important aspects of the problem facing 
a learning agent that interacts with an 
environment to achieve a goal (Sutton, R. and A. 
Barto 2018). An assumption in MDPs is that the 
agent can fully observe the state of the 
environment in each timestep. In applications 
where the agent only has partially knowledge 
about the environment, the partially observable 
MDP (POMDP) is a suitable framework. The 
POMDP can be described according to (Kaelbling 
1998) as a tuple , where 

 

�  is a finite set of states of the world, 
�  is a finite set of actions, 
�  is the state transition 

function that gives to each world state and 
agent action a probability distribution over 
world states, 

�  is the reward function that 
gives the expected immediate reward gained 
by the agent for taking each action in each 
state, 

�  is a finite set of observations the agent can 
experience of its world, 

� is the observation function, 
which gives for each action and resulting 
state a probability distribution over possible 
observation. 

The goal of the POMDP is to maximize the 
amount of reward  the agent can expect to 
accumulate over the future depending on the 
actions it performs. The rule by which the agent 
selects actions  as a function of the belief 
state  is provided by the policy . The 
computation of the optimal policy is based on the 
knowledge about the state-transition probabilities 
provided by  and an estimation of the current 
belief state based on the received observations 

 provided by the observation function .  

4.1. States 

The state  of the -th drone at time step , 
with , is defined by the position 

, in the grid world environment 

(4) 

 
the bank angle  and course angle . The 
drone is positioned in a flood scenario that is 
modelled in form of a binary flood grid map 

 of width and height  
pixels:  

 

4.2. Actions  
In each timestep the agent can choose to perform 
a discrete action  that either increases or 
decreases the drones bank angle  by 

 degrees or maintains the current bank angle: 
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Bank angles are limited to deg  
deg. 

4.3. Observations 
The agent has full knowledge about each drone’s 
position, bank angle and course angle in every 
timestep. Due to the limited field of view of the 
camera, pictures taken at each timestep capture 
only an incomplete state of the environment. 
Active exploration is required so that the drones 
get an overall picture of the underlying flood 
scenario. The observation  of the -th 
drone at each timestep includes a processed image 

 with a number of  
channels: 

 

The first channel  encodes binary information 
about cells that are completely unknown up to the 
current time step, the second channel  about 
cells that have already been observed and are 
target cells and finally the third channel  about 
cells that have been observed and are no target 
cells. To refer to a single cell within the image 

, for , , 
, is denoted as the -th cell of the -th 

image channel at timestep  in the following. 

4.4. Rewards 
The goal is to maximize the coverage of the target 
area within a finite time horizon, defined for 
example by a battery constraint. To fasten 
convergence, reward shaping is used, where the 
agent receives an auxiliary, frequent learning 
signal. We prioritize the coverage of new target 
cells, while non-target cells receive a reduced 
reward at half the value of target cells. Boundary 
violations are penalized in two ways. If an out of 
boundary event occurs, the episodes are 
terminated prematurely, stopping the agent from 
collecting further rewards. On top of that, it 
receives a penalty for the relevant action. Overall, 
increased coverage and compliance with the 
boundaries and therefore the assigned airspace 
and local obstacle requirements are rewarded. 
Consequently, the overall reward in each time 
step is the sum of the following components: 

 (5) 

 

 

(6) 

 

 

(7) 

 
with: 
 

 

 

(8) 

The used factors were determined heuristically. For 
simplification, the drones are initialized in fixed 
positions on a circle, each heading towards the 
centre of the grid with uniform angular distances. 
We do not consider collisions in the formulation of 
the reward function. 

5. Model Architecture 
The policy  to coordinate the drone swarm in the 
flood area is obtained using Proximal Policy 
Optimization (PPO). In this method, data which 
includes states, actions, and rewards, is sampled 
from the current version of the policy by 
interacting with the environment. A surrogate 
policy gradient objective  is then used to find 
new parameters  of the policy using stochastic 
optimization.  denotes the expectation based on 
the collected samples of a batch (Schulman 2017). 

 is the advantage function estimate, which 
predicts the advantage of taking an action in a 
given state , comparing it to the expected future 
rewards under its default behavior (Schulman 
2016).  

   (9) 

PPO is less prone to stability issues from policy 
updates by clipping the probability ratio  to 
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the interval of , where  denotes the 
clipping parameter. (Schulman 2017) 

 (10) 

We use a centralized agent for the on-line decision 
making of the swarm, meaning that individual 
drone actions are derived from a global swarm 
state. Similar to the approach shown in  (Baldazo 
2019), we process a two-sided observation space, 
consisting of the drones positions, bank angles, 
headings and a coverage map. We scale angular 
observations by using sine and cosine and divide 
the position by the grid dimension. The coverage 
map is categorically encoded into three channels: 
The unknown cells, the known unflooded or 
unpopulated cells, and the known cells of interest. 
During the beginning of the task, all cells are 
unknown. As the coverage task progresses, the 
distribution of cells in each channel changes. To 
leverage spatial features, we process the 3-
channel coverage image at every time step using 
a Convolutional Neural Network (CNN) with 
three 5×5 convolution layers that yield 8, 16, and 
32 feature maps with ReLU activation and max 
pooling. These feature maps are flattened and 
passed through two fully connected layers. 
Meanwhile, drone states are processed separately 
via two fully connected layers. The outputs from 
both networks are concatenated into a 256-
dimensional vector and then fed through three 
additional fully connected layers to produce the 
action probabilities and value function estimate. 

6. Training and Results 
The parameters used for training are shown in 
Table 1. 2.5 million steps are run to learn the 
optimal actions in the given environment. We 
change the underlying target area map randomly 

from a selection of 100 target area maps to 
encourage generalization.  

Table 1. Training parameters 

Parameter Value 
Learning rate  3e-4 
Discount factor (γ) 0.99 
Generalized Advantage 
Estimate  

0.95 

Clipping range  0.2 
Rollout buffer size 512 samples per 

environment (16 parallel 
environments) 

Batch size 1024 
Episode length 90 steps (45s) 
Action update interval  0.5s 
Optimization algorithm ADAM (Kingma 2014) 

 
The plot in Fig. 4 shows an upward trend in the 
moving average of the target area coverage during 
training, indicating that the swarm is navigated 
more efficiently within the given time span. Due 
to changing environments, features between 
episodes and exploration noise, variations of the 
raw values are expected.  

Fig. 4 Moving Average of Target Area Coverage 

Fig. 3 Trajectory sample during policy execution in the evaluation phase. ( , , )
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After training, we deploy the resulting policy to 
25 previously unused maps. We execute the 
policy in a deterministic setting, where the actions 
of highest probability are chosen for the drones in 
every step. The swarm shows an average target 
area coverage of μ=87.02% and a standard 
deviation of σ=4.51%, indicating that the learned 
behaviour from the training stage transfers well to 
other environments. A trajectory sample during 
policy execution with the learned network 
weights is shown in Fig. 3. 

7. Conclusions and outlook 
In this paper, we present a framework to process 
historic flood data based on satellite imagery for 
use in a Reinforcement learning coverage 
optimization environment. We utilize a 
centralized architecture, combining a MLP (for 
drone-specific observations) and a CNN (for the 
coverage image) to process the state information 
and pass it to a PPO algorithm, to obtain an 
effective policy. The agent shows improving 
capabilities at coordinating the drone swarm 
starting from fixed positions, increasing the 
covered area of interest within a finite time span 
and therefore also optimizing the usage of battery 
resources. Future research includes prioritization 
of high-risk areas for improved guidance, 
considering the requirements of an underlying 
search & rescue task, as well as improved UAV 
dynamics, sensor models and an energy model, 
reducing the gap to a real application. 
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