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During an aircraft development, several tests are performed to assure the safety of flight and the compliance with 

certification requirements. These testing campaigns require significant resources, such as prototypes availability, 

technical staff and material resources. An effective planning is essential to avoid impact on the prototype schedule, 

and subsequent phases, including marketing and certification campaigns. This work proposes the combination 

between Fuzzy Theory and Monte Carlo Simulation (MCS) to evaluate the testing campaigns schedule and the risks 

associated with reducing the planning, through modeling the uncertainties. The Fuzzy Theory handles the subjective 

data and adverse conditions, while the Monte Carlo Simulation estimates temporal uncertainties, based on 

probabilistic models and data elicited with specialists. 
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1. Introduction 

During the development phase of an aircraft, an 

aeronautical prototype is built to perform ground 

and flight tests in order to validate and verify the 

systems implementation. According to SAE ARP-

4754B (2023), ground and flight testing must be 

performed to confirm the required assumptions and 

analysis used during the safety assessment process 

and to ensure that the design safety issues are 

addressed. In this way, the prototype undergoes a 

series of ground and flight test campaigns. These 

testing campaigns evaluate handling qualities, 

operational performance, systems operation, and 

for certification purposes, the testing campaigns 

are undertaken to show compliance with the 

certification requirements. 

Planning such testing campaigns requires a 

robust strategy to coordinate multiple departments 

and teams, secure the availability of essential 

resources, and, most importantly, accurately 

forecast the testing duration to minimize delays and 

optimize efficiency. 

The testing campaigns are surrounded by 

uncertainties that impact the execution time of the 

tests, such as: the experience of the team, the 

complexity of the test execution, the initial 

condition of the aircraft (previous failures, 

limitations, and restrictions), physical conditions of 

the participants (availability, fatigue, exhaustion, 

stress, etc.), weather conditions, and more. These 

uncertainties must be taken into account during the 

planning phase to produce a more accurate and 

reliable schedule.  

Faced with these uncertainties, traditional 

planning techniques are often insufficient to ensure 

the required level of accuracy (Kong et al. 2015). 

In this context, the combination of advanced 

methods, such as Fuzzy Theory and Monte Carlo 

simulation, emerges as a promising solution. Fuzzy 

Theory, by handling imprecise or subjective 

information—such as failure predictions and the 

interpretation of anomalous behaviors during 

tests—provides a robust approach to incorporating 

these uncertainties into the planning process, 

making it more adaptable and effective. 

Meanwhile, Monte Carlo simulation enables the 

modeling of variability and uncertainties present in 

the preparation and execution processes, offering a 
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more realistic forecast of activity durations and 

resource utilization. 

This article explores how the combined 

application of fuzzy logic and Monte Carlo 

simulation can optimize the planning of system 

integration test campaigns, supporting more 

informed decision-making. Monte Carlo 

simulation involves discretizing input data, while 

fuzzy logic accounts for the subjectivity and 

uncertainties of the data (Brandão 2008). By 

integrating simulation and fuzzy reasoning, it 

becomes possible to develop more flexible and 

accurate models that adapt more effectively to 

variations in the testing environment while 

minimizing the impact of uncertainties. This results 

in more efficient campaigns with reduced risk of 

delays. 

The use of simulations, such as fuzzy 

inference and Monte Carlo, enables predictions of 

performance, test scenarios, and risk analysis, 

thereby mitigating uncertainties in the process. 

This integrated approach ensures a robust 

framework for managing complex test campaigns. 

Based on this introduction, this article aims to 

(1) propose a method for predicting a more 

accurate schedule for testing campaigns using 

Fuzzy Theory and Monte Carlo Simulation; (2) 

apply the proposed method to a real-world case to 

evaluate the feasibility and risks associated with 

reducing the duration of a testing campaign; and 

(3) compare the results obtained with a maximum 

time allocated. 

2. Literature review 

Modeling uncertainties in test campaigns for 

aeronautical systems is a critical issue due to the 

complexity and risks inherent in the development 

of aeronautical prototypes. In planning these 

campaigns, traditional methods often prove 

insufficient to deal with uncertainties related to 

team experience, adverse conditions and variability 

in execution times. In this sense, the combination 

of advanced theories, such as fuzzy logic and 

Monte Carlo simulation, is emerging as a 

promising approach to improving the reliability 

and efficiency of schedules. 

Expert elicitation is widely used to quantify 

uncertainties in scenarios where historical data is 

non-existent or insufficient. Pestana (2017) 

highlights the relevance of this method in 

reliability analyses, emphasizing that the 

combination of opinions from experienced experts 

and mathematical techniques, such as fuzzy logic, 

can result in a more realistic modeling of 

uncertainties. This approach ensures that planning 

incorporates expert judgment, leading to more 

accurate and reliable estimates. To enhance the 

reliability of expert opinions, it is essential to 

calibrate them by assigning weights to the elicited 

data. Several methods exist for this purpose, but 

weight assignment is a cognitively demanding 

task, subject to biases and influenced by the 

assessment method used and it is determined by 

procedural aspects (Riabacke, Danielson, and 

Ekenberg 2012). 

Monte Carlo simulation is a computational 

technique that generates random sampling to 

estimate the probabilities of different outcomes in 

processes that involve uncertainty, based on 

historical data or expertise field (Takeshi 2013, 

Alzarrad 2020). It is widely used in fields such as 

engineering, finance, and project management to 

model the variability of complex systems and 

assess risks or forecast results. 

Fuzzy logic stands out for its ability to deal 

with subjective and imprecise data. This technique 

is widely used in systems where variables cannot 

be modeled accurately, such as in handling 

uncertainties in construction projects that 

integrates risk management (Doungsoma and 

Pawan 2023, Marrouchi, Hessini and Chebbi 

2024). Its application allows factors such as 

variability in environmental conditions or human 

performance to be incorporated into the planning 

model, promoting greater flexibility and 

adaptability. 

Using fuzzy sets, linguistic variables and 

inference rules, it is possible to model systems with 

greater adaptability to the uncertainties of the 

environment. Work such as that by Marrouchi, 

Hessini and Chebbi (2024) demonstrates the 

effectiveness of fuzzy logic in resource 

optimization and planning problems in complex 

systems such as energy networks, highlighting its 

applicability in other operational contexts 

including the aeronautical sector. 

Several studies highlight the benefits of 

Monte Carlo simulation in project scheduling, such 

as improving the accuracy of completion time 

predictions and identifying potential risks. 

Karabulut (2017) explores the integration of Monte 

Carlo simulation with project management 

techniques to enhance construction project 
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planning, focusing on scheduling challenges and 

uncertainties inherent in project management. 

Kong et al. (2015) focuses on using Monte Carlo 

simulation to evaluate the risks associated with 

scheduling in construction projects. The method 

captures variability in project timelines by 

incorporating input data represented as probability 

distributions. Both studies demonstrate how 

probabilistic modeling can enhance decision-

making in complex environments, emphasizing the 

importance of integrating risk assessments into 

schedule management to reduce project delays and 

budget overruns. 

The integration of risk assessment techniques 

is a way to provide more comprehensive methods 

for decision-making in complex scenarios. 

Alzarrad (2020) proposes a hybrid approach to 

optimize resources planning and operation by 

combining probabilistic methods and fuzzy set 

theory to address both random and subjective 

uncertainties. 

3. Method 

This work proposes a method to forecast the 

duration of a testing campaign regarding the 

uncertainties inherent in this process, based on the 

specialist’s opinion and using probabilistic 

methods and tools. 

The process begins with an elicitation phase 

involving specialists with experience in similar test 

campaigns. In his case study, Pestana (2017) 

employed a structured scoring method to evaluate 

the expertise of specialists based on objective 

criteria, such as prior experience, academic 

background, and participation in similar studies. A 

similar approach is applied in this study, assigning 

scores to specialists according to their experience 

and expertise in test campaigns, based on the 

following criteria: 

� Experience, regarding their tenure with 

company in this area of actuation; 

� Number of test campaigns they had participated 

in.  

In the next step, fuzzy logic is applied to 

model the variability and uncertainty inherent in 

the process. Linguistic variables and inference 

rules are defined to create a fuzzy system, which is 

then applied to the elicited data to adjust the time 

estimates provided by specialists. The 

defuzzification process converts the fuzzy results 

into numerical values using the centroid method 

(Mamdani model).  

The numerical values obtained from 

defuzzification are aggregated across specialists 

for each test point, producing the mean and 

standard deviation (sd) that characterize a normal 

distribution for the adjusted duration of each test 

point. 

In this work, Monte Carlo simulation is 

employed to predict the total duration of the 

process taking into account various factors, 

including the significant variability in setup and 

test execution times. The simulation is performed 

using a function designed to calculate the total 

testing duration based on the parameters involved 

in the process. 

4. Development 

4.1. Case study 
In general, a planning of a testing campaign 

consists of: selection of test points, definition of a 

daily work schedule, identification of required 

support (technical staff, equipment and material 

resources), and the estimate of the testing 

campaign duration. It includes preparation time, 

breaks time, set-up time, and execution time for 

each test point.  

Typically, a time slot is allocated for the test, 

accounting for general uncertainties. However, this 

allocated time may either be insufficient or 

excessive. In both scenarios, the schedule is 

negatively impacted, leading to delays or 

inefficient use of the prototype's availability.  

In this work, the proposed method is applied 

to a real-world case to predict the duration of a 

testing campaign, aiming to create a more accurate 

schedule while reducing the predicted time and 

assessing the associated risks of this reduction. 

   

4.2. Analysis 
The elicitation process was conducted with a group 

of three engineers, each with experience in at least 

one test campaign. Table 1 and Table 2 outline the 

objective criteria used to assess their expertise, 

assigning a score to each level of proficiency. 

Based on these criteria, each specialist was 

evaluated and assigned a score. The individual 

scores were then summed and normalized, 

resulting in a weight for each specialist. The final 

weights are presented in Table 3. 
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Table 1: Score based on years of experience 

within the company 

Experience Points 

0 to 5 years  1 

6 to 10 years 2 

11 to 15 years 3 

16 to 20 years 4 

21 years or more 5 

Table 2: Score based on the number of test 

campaigns participated in 

Number of test campaigns Points 

0 to 1 1 

2 to 4 2 

5 to 8 3 

9 to 12 4 

13 or more 5 

Table 3: Weight obtained for each expert 

Expert Experience Test 

campaigns 

Total Weight 

A 27 years  

(5 points) 

12 tests 

(4 points) 

9 45 % 

B 18 years  

(4 points) 

2 tests 

(2 points) 

6 30 % 

C 6 years  

(2 points) 

5 tests 

(3 points) 

5 25 % 

 

For the fuzzy inference in this case study, a 

fuzzy system was developed using defined 

linguistic variables and fuzzy rules. The linguistic 

variables are detailed in Table 4 for complexity, 

Table 5 for estimated time, and  

Table 6 for adjusted time. The corresponding 

fuzzy rules are provided in Table 7. 

Table 4: Linguist variable for complexity 

Complexity (fuzzy triangle) 

Low 0, 2, 4 

Moderate 2, 4, 6 

High 4, 6, 8 

Very high 6, 8, 10 

Table 5: Linguistic variable for estimated time 

Estimated time (fuzzy normal) 

Short mean = 20, sd = 6 

Medium mean = 40, sd = 6 

Long mean = 60, sd = 6 

 

Table 6: Linguistic variable for adjusted time 

Adjusted time (fuzzy normal) 

Short mean = 15, sd = 5 

Medium mean = 30, sd = 5 

Long mean = 45, sd = 5 

Very long mean = 60, sd = 5 

Table 7: Fuzzy rules 

Inputs Output 

Estimated time Complexity Adjusted time 

Short Low Short 

Short Moderate Medium 

Medium Low Short 

Medium Moderate Medium 

Medium High Long 

Long Moderate Medium 

Long High Long 

Long Very high Very long 

 

Complexity is represented as a rating on a 

scale from 0 to 10 representing the challenges 

involved in executing the test procedures and 

verifying the expected results. The estimated time 

was derived from the elicitation process conducted 

with the specialists, while the adjusted time was 

obtained through fuzzy inference. 

Fig. 1 presents the membership functions of 

the inputs (estimated time and complexity) and of 

the output (adjusted time) variables. 

 

 
Fig. 1. View of fuzzy system membership function. 
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Fuzzy inference was conducted using 

RStudio (version 2024.04.2 Build 764)a with the 

“sets” package (version 1.0-20)b, producing 

adjusted time based on test complexity, as assessed 

by specialist for each test point. 

Following the fuzzy inference, the adjusted 

times were aggregated by integrating the weighted 

contributions of each specialist. The mean of the 

aggregated adjusted time was calculated using the 

weighted average formula shown in Eq. (1), and 

standard deviation (sd) was calculated using the 

formula shown in Eq. (2); where i is the i-th test 

point. 

  (1) 

 (2) 

The aggregated results are expressed as mean 

and standard deviation (sd). 

For the Monte Carlo simulation, the 

parameter used to predict the total duration of the 

test campaign are presented in Table 8. 

Table 8: Proposed case parameters 

Number of test 

points 

N = 20 

Daily working 

hours per day 

T_journey = 16h = 960 min 

(2 work shifts) 

Preparation time T_prep = 150 min 

Break time T_intervals = 180 min 

Effective time per 

day 

T_effective = 630 min 

Set-up time T_setup = Uniform 

distribution (5,180) / per 

teste 

Allocated slot of 

time 

5 days 

Target time 3 days 

 

Although preparation and break times are 

subject to variability and uncertainty; however, in 

this work, the mentioned times are considered 

fixed durations and are subtracted from the daily 

working hours, thereby determining the effective 

available time per day. 

The set-up time refers to the time required to 

prepare the aircraft for the next test point. This 

includes resetting failure messages, returning 

systems to their normal configuration, setting 

parameters, and other necessary actions. It depends 

on the results of the previous test point and how it 

concluded. Additionally, any unexpected situation, 

involving the aircraft or not, such as weather 

condition, may affect the set-up time. Given the 

uncertainties and variability involved, the set-up 

time was modeled using a uniform distribution, 

ranging from 5 to 180 minutes. 

The allocated time represents the available 

duration to complete the testing campaign, while 

the target time is the goal set to improve the 

efficiency of the testing campaign planning. 

The equation used in the Monte Carlo 

simulation to calculate the total testing duration is 

presented in Eq. (3). 

  (3) 

Monte Carlo simulation was conducted using 

RStudio (version 2024.04.2 Build 764)a, 

generating the total testing duration results, after 

10,000 simulation iterations. 

The simulation results show that the mean 

duration of the testing campaign is 3.84 days, with 

a standard deviation of 0.36 days. Additionally, 

there is a 99.93% probability that the duration will 

be 5 days, while the probability to complete the 

testing campaign in 3 days is 0.96%.  

Fig. 2 presents the probability density 

function and Fig. 3 presents the cumulative density 

function. 

 

 
Fig. 2. Distribution of total testing campaign duration 
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Fig. 3. Cumulative distribution of the total testing 

campaign duration 

 

4.3. Discussion 
The elicitation of specialists was conducted using a 

straightforward and traditional scoring method 

based on their expertise. While this approach may 

involve some degree of subjectivity, and no 

universal rule guarantees that specialist expertise 

always leads to optimal results (Pestana 2017), this 

method contributed to enhance consistency and 

reliability in the outcomes. 

The Fuzzy Theory adjusted the estimated 

time provided by specialists taking into account the 

complexity involved in executing the tests, as 

defined by the established rules. In many cases, the 

adjusted time exceeded the estimated time, even 

when the complexity level is not so high. This 

phenomenon occurs due to the overlapping 

membership functions of the input (estimated time 

and complexity) and output (adjusted time) 

variables, as shown in Fig. 1, which simultaneously 

activate multiple fuzzy rules. The centroid method 

balances these influences, with a weighted average 

of contributions. As a result, the aggregation of 

outputs from these rules leads to a higher 

defuzzified value, reflecting the system's 

interpretation of the combined uncertainty and 

variability in the inputs. 

Applying fuzzy inference separately for each 

specialist, prior to aggregation across them, 

captures their distinct perspectives and judgments, 

preserving variability and resulting in a more 

comprehensive model. In contrast, aggregating 

beforehand simplifies the process but sacrifices 

detail and precision. 

Monte Carlo simulation can generate a vast 

number of scenarios by accounting for input 

variabilities, resulting in a distribution of values 

and their frequencies. This approach offers insights 

into the mean and maximum time durations, as 

well as the risks associated with reducing the 

duration of the testing campaign. 

In this case study, the Monte Carlo simulation 

demonstrates that completing the testing campaign 

within the initially allocated 5 days is significantly 

more feasible, with probability of 99.93%, than 

achieving the target reduction to 3 days. As 

presented in Section 4.2, the probability of 

completing the campaign in 3 days is 0.96%, 

highlighting the high risk associated with such a 

reduction. Conversely, there is a 50% probability 

of completing the campaign in 3.86 days, 

indicating that the proposed target is overly 

ambitious and likely unrealistic within the 

constraints. 

5. Conclusion 

The aircraft testing campaigns are surrounded by 

uncertainties and variabilities that were modeled in 

this study through the use of the Fuzzy Theory and 

Monte Carlo simulation. These methods have 

proven effective to handle deviations in the process 

and collaborates to produce a more reliable 

planning. It provides decision-makers with the 

ability to reduce risk in the outcome and make a 

more well-founded decision. 

Using only the Monte Carlo simulation on 

the elicited data would be feasible and provide a 

reasonable prediction, effectively addressing 

uncertainties and variabilities. However, the 

integration of fuzzy variables to account for the 

subjective nature of test complexity enhances the 

process. This fusion of methods represents a key 

advantage, combining quantitative precision with 

qualitative insights.  

This study is grounded in a real-world case, 

with data elicited from specialists experienced in 

conducting testing campaign. Additionally, the 

information utilized, such as complexity, 

preparation time, set-up time, and other 

parameters, are also derived from practical 

scenarios, ensuring the analysis is both relevant 

and realistic.  

Although the study focused on aircraft 

testing, the method shows potential to be adapted 

to other sectors facing similar challenges, such as 

construction and energy. 

6. Future studies 

For future studies, eliciting a larger number of 

specialists could enhance the reliability and 

representativeness. Other parameters, such as the 
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complexity of the tests, may also be included in the 

elicitation process. Additionally, alternative 

elicitation methods, such as Cooke’s method, 

Bayesian approaches, or Monte Carlo simulation, 

may be explored to incorporate probabilistic 

distributions and better manage uncertainty. 

The method proposed in this work can be 

applied to a wider range of tests. Furthermore, it 

may incorporate other variables, such as weather 

constraints and equipment availability, to enhance 

the accuracy of the simulations and expand their 

scope. 

To further enhance the risk analysis, the 

methodology could be complemented with failure 

assessment techniques, such as Failure Mode and 

Effect Analysis (FMEA) or Fault Tree Analysis 

(FTA), allowing for a more detailed and 

comprehensive view of the threats and 

uncertainties during the execution of the testing 

campaign. 
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Appendix A. Data and Code Availability 
The code used in this study was developed in RStudio 

and is available at the link below, providing full 

reproducibility of the analyses performed. 

https://drive.google.com/file/d/15QF1lcLrKJHWSu9I

XK7Y7aQbGNwLkbtv/view?usp=sharing 
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