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Industry 4.0 technologies are revolutionizing industrial maintenance management, highlighting Machine Learning
(ML) techniques as key tools to anticipate failures more efficiently. In this study, the dependencies between
components of a crushing line of a mining company in Chile and the different types of failures are analyzed, using
ML models and structural equation models (SEM), with the objective of determining which ML model best fits the
data, providing reliable relationships, so that in future work these relationships can be used in failure prediction
models. Both models complement each other, since it is currently recognized the importance of a comprehensive
approach in the analysis of failure types, allowing to improve maintenance management by offering an alternative
to reduce costs associated with maintenance and downtime. The main motivation is to increase the accuracy of early
warning systems, supporting more informed decision making. ML models such as Random Forest (RF) and
Artificial Neural Networks (ANN) are employed, whose dependency analyses have shown positive results in
previous studies. In addition, Structural Equation Modeling (SEM) is integrated, which allows exploring the
complex interrelationships between system variables and different types of faults. The models were evaluated using
the confusion matrix, accuracy, precision, recall and F1 score, complemented by SEM-derived indicators that
reinforce the validity of the results. ANN showed outstanding performance with an accuracy of 0.9926 and
significant relationships according to SEM, whereas RF suffered from overfitting, limiting its applicability in SEM.
This dependence analysis provides a novel approach, using two techniques that together provide a more robust
analysis of dependence research and contributing to existing research in this field.

Keywords: machine learning; structural equation model,; dependency analysis.

1. INTRODUCTION factor for operational sustainability. In the mining

The wear and tear of industrial assets directly ~ industry, maintenance can represent more than
affects production and the quality of the final 30% of operational costs (Pinciroli L., et al. 2023),
product, which makes efficient maintenance a key s improving its efficiency not only reduces costs,
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but also optimizes equipment availability and
reliability.

In this context, the adoption of advanced
technologies, such as predictive maintenance based
on Industry 4.0, has become an essential strategy
for asset management. Tools such as Digital Twins
allow simulating equipment behavior in real time,
using operational data to anticipate failures and
optimize maintenance planning (Wang S., et al.
2016). These digital solutions have proven to be
highly effective in providing a more detailed view
of asset condition, enabling more accurate and
timely intervention.

Artificial Intelligence (AI) and ML have
revolutionized the way industrial data is analyzed,
enabling early detection of anomalies and
prediction of failures before they occur. Unlike
traditional corrective or preventive maintenance
approaches, ML-based models can identify
hidden patterns in large volumes of data,
incorporating dependencies between critical
variables to improve prediction accuracy and
optimize maintenance strategies (MoglenR. L., et
al. 2023).

In addition, SEM has been used extensively in
studies of interdependence between multiple
components, providing a more holistic view of the
relationships between key variables in industrial
systems.

This study focuses on the analysis of data from
a crushing line in a mining operation, integrating
information from a Distributed Control System
(DCS), a Digital Twin and operational records.
integration, the performance of
different Machine Learning models will be
evaluated to determine which one offers the best

From this

results in terms of accuracy and predictive
capability. The main objective is to provide a
solid basis for maintenance optimization using
advanced technologies, thus contributing to the
improvement of operational efficiency in the
mining industry, where the results are expected to
serve for the creation of an improved early failure
prediction model.

2. BACKGROUND AND LITERATURE
REVIEW

Understanding the theoretical foundations and
previous research on dependencies, ML, and
SEM is crucial for developing a robust analytical
framework. This section reviews key concepts
and relevant studies that support the proposed
methodology.

2.1. Dependencies and interdependencies
The analysis of  dependencies and
interdependencies in complex systems is essential
to understand their interactions and prevent
cascading failures (Sun W., 2022).
Dependencies are unidirectional relationships,
while interdependencies are bidirectional, with
mutual impacts. Although they often improve
efficiency, they also increase vulnerabilities during
failures (Moglen R. L., et al. 2023).
Studies  highlight that modelling
relationships reveals hidden connections and
improves the ability to foresee contingencies and
make strategic decisions (Zio E., et al. 2011)
(Huang H., et al. 2024). Tools such as SEM provide
a robust framework for quantifying and evaluating
these interactions in critical systems.

et al

these

2.2. Structural equation models

SEM models causal relationships between
variables, overcoming limitations of traditional
techniques by handling complex interactions and
measurement errors (Kline R. B., 2016). It has
been applied in thermal comfort, disaster
management and soil moisture studies (Elnabawi
M. H,, et al. 2024) (Geddam S. M., et al. 2024)
(Wang S., et al. 2023). In conjunction with ML,
SEM configures causal relationships, while ML
identifies nonlinear patterns, offering robust
analysis for complex systems.

2.3. Machine learning and algorithms

ML identifies complex patterns and makes
predictions, highlighting supervised learning for
classification. The most prominent models in this
field include Logistic Regression (LR), Support
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Vector Machine (SVM), Decision Trees (DT), RF
and ANN, with RF and ANN standing out for
their accuracy (Siddique A. B., et al. 2024)
(Goodfellow 1., et al. 2016).

On the one hand, RF combines multiple
decision trees to improve accuracy and reduce
overfitting. It uses random samples of data to train
each tree and majority or averaged voting for
predictions. It is robust to missing data and
provides information on feature importance,
although it can be complex and computationally
intensive (Liaw A., et al. 2002).

On the other hand, ANNs Inspired by the
human brain, they model complex nonlinear
relationships through layers of interconnected
nodes. Their training adjusts weights through
backpropagation and activation functions such as
ReLU or sigmoid. They are versatile and effective
for complex problems but have disadvantages
such as opacity in their interpretation and high
computational costs (Goodfellow I., et al. 2016).

The analysis focuses on RF and ANN to study
dependencies between operational components
and fault types, integrating the best model with
validated hypotheses in a SEM framework to
improve prediction accuracy.

The following section presents the
methodology of the study given the literature
review.

3. METHODOLOGY
This section describes the methodological
approach followed in this study, detailing the
process from data collection to the selection and
evaluation of the ML-SEM dependency model
that best represents the system under analysis.
The primary objective of this methodology is to
identify the key operational parameters
influencing failure occurrences and to establish a
structured dependency model that enhances
interpretability and predictive capabilities in an
industrial mining environment.

To achieve this, the methodology is divided
into three main stages. First, data collection,
preprocessing, and exploration are performed to

ensure the quality and reliability of the dataset,
which is crucial for obtaining meaningful
insights. Then, two machine learning models, RF
and ANN, are trained and evaluated to identify the
most influential factors affecting system failures.
The interpretability of these models is enhanced
using Shapley Additive exPlanations (SHAP),
allowing a deeper understanding of variable
contributions. Finally, the results obtained from
the ML models are integrated into a SEM
framework, enabling a more comprehensive
assessment of the dependencies between variables
and validating the relationships through statistical
fit indices.

By combining ML techniques with SEM, this
approach not only enhances predictive accuracy
but also provides a structured representation of
the relationships between operational variables
and failure types. This hybrid methodology
bridges the gap between black-box predictive
models and interpretable statistical frameworks,
facilitating more informed decision-making in
predictive maintenance strategies.

3.1. Data
exploration

collection, preprocessing and

Data collection is performed from the system to
be studied, ensuring that data on operating
parameters and types of failures are correctly

extracted and retained. A comprehensive database
is recommended to avoid bias.

Data preprocessing ensures data quality,
consistency and usefulness, including filtering of
numerical variables, elimination of erroneous
data and normalization of variables.

In data exploration, patterns, relationships and
anomalies are identified, determining the relevant
variables and analyzing the frequency of failures
to work with the most frequent ones, always
prioritizing data quality.

3.2. Dependency model
evaluation

The data are used to train two models, RF and
ANN, with the objective of identifying the most

training and
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influential operating parameters in the types of
failures. Mathematically RF is represented as
follows:

B

A 1

f9 = 2> 1,00 (1)
b=1

Where B is the number of trees, T}, is the b-th
tree and f (x) is the aggregate prediction.
On the other hand, ANN is represented as

follows:
y=f (Z wix; + b) @
i=1

Where x; are the inputs of the neuron, w; are
the weights associated with each input, b is the
bias, which allows the activation function to be
shifted, f is the activation function that introduces
nonlinearity and finally, y is the output of the
neuron.

After training, Shapley Additive exPlanations
(SHAP) is used to decompose the predictions and
understand the contribution of each variable.
SHAP provides local interpretability, helping to
identify the most relevant variables for each type
of failure.

Finally, the models are evaluated using
indicators such as the confusion matrix, accuracy,
precision, recall and F1 score, with the confusion
matrix showing the predictions against the actual
classes.

3.3. SEM evaluation and integration
After evaluation of the ML models, the results
obtained are fed into a SEM model. These results
are structured so that each row represents an
observation and each column an operational
variable. The relationships specified in the model
must be supported by the data, as they will be
tested as hypotheses.

The SEM model is evaluated using several key
indicators to measure its fit to the data. The most
common ones are:

(1) Chi-square: Measures the relationship
between categorical variables or model
fit.

(1)  Comparative Fit Index (CFI): Measures
how well the theoretical model fits the
data compared to a null model. A value
close to 1 indicates a good fit.

(ii1) Tucker-Lewis Index (TLI): Compares
the fit of the proposed model to the null
model, penalizing more complex
models. A value close to 1 is a good fit,
and values between 0.90 and 0.95 are
acceptable.

>iv) Root Mean  Square  Error of
Approximation (RMSEA): Estimates
the discrepancy per degree of freedom
between the specified model and the
perfect model. Values < 0.05 indicate a
good fit, while values > 0.08 suggest a
mediocre or poor fit.

W) Standardized Mean Residuals (SRMR):
Measures the average discrepancy
between the observed and predicted
correlations by the model. A value <
0.08 is a good fit.

A combination of these indicators provides a
complete evaluation of the model.

4. CASE STUDY
The system studied is a crushing line (Figure 1) of a
copper mine located in northern Chile, which is

composed of crusher No. 5, a CV-1C conveyor belt,
the FE002 feeder and the CV-2C conveyor belt.

Conveyor Belt Feeder Conveyor Belt
Cv-1C FE002 CV-. 2C
‘ ] - (@) - | |
j 0000 O 000
Crusher N°5 b

Fig. 1. Mining crushing line

The equipment in Figure 1 is connected to a
DCS, which collects data to control industrial
processes. This system is connected to a Digital
Twin, which replicates the process in real time
virtually. If there are significant discrepancies
between reality and virtual, the information is sent
to a maintenance database.

1463



1464 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

There is a unified database that includes
maintenance records, DCS and the Digital Twin,
with 547,953 historical data for a period from
August 2020 to August 2021. Among the
variables, there are 36 numeric, 6 qualitative and
one time variable. Null columns and similar
numerical variables are eliminated to avoid
multicollinearity problems, and the data are
standardized.

The 6 most relevant categorical variables are
selected and the events that affect shredder No. 5
are observed (since this equipment is the one with
the most data), where 87.5% of the data belong to
scheduled maintenance. For the study, only
unplanned events were selected: “Mechanical
failures” and  “Unscheduled  operational
stoppages”, leaving 31,834 records with 27
numerical and 2 categorical variables.

Machine learning models (RF and ANN) are
trained using a multi-category classification
approach. Relationships between variables are
evaluated using SHAP values and entered a SEM
model to validate hypotheses and understand
causal relationships between components. The RF
model is excellent for identifying nonlinear
relationships and making accurate predictions,
while the SEM model allows explicit
representation of structural relationships between
variables.

The ANN model follows a similar structure,
with fully connected layers and ReLU activation
function. Model performance is evaluated with
classification metrics and further analysis is
obtained using SHAP values for each fault type,
which are then fed into the SEM model to obtain
more detailed and structured explanations of the
relationships between variables.

5. RESULTS

This section presents the results obtained from the
different models, highlighting their classification
performance, key influencing variables, and the
fit of the SEM.

5.1. RF-SEM model results

With the training of the data using the RF model,
a classification report was obtained with an
accuracy of 0.9984 (see Table 1), indicating
almost perfect classification. It is important to
note that a class called "others" was included,

which covers events that are neither mechanical
failures nor unscheduled operational stops. This
class, although not relevant to the study, is the
majority and was kept to avoid losing valuable
information.

Table 1. RF classification report

Accuracy: 0.9984
Classification  Precisio  Recal F1- Suppor
n 1 scor t
e
Mechanical 1.00 1.00 1.00 372
Failures
Unscheduled 1.00 0.98 0.99 176
Operational
Others 1.00 1.00 1.00 9003

The report also shows that the precision, recall
(the proportion of true positives), and Fl-score
are almost perfect in all classes.

Next, using SHAP, the key numerical
variables for mechanical failures and unscheduled
operational stops are identified and presented in
Table 2.

Table 2. RF hypotheses most influential variables for
each event

Event Most Influential Variables

Resistance deviation + Ampere

Mechanical error Motor 1 + Total Tons DT +
Failures Performance Tons per Shift +

Temperature Transmits

Resistance deviation + Ampere

Unscheduled error Motor 1 + Total Tons DT +
Operational Performance Tons per Shift +

Temperature Transmits

The model inputs are the dependent variables:
unscheduled mechanical and operational failures,
which are influenced by five independent
variables. The SEM model is executed, and the
results are shown in Table 3.

The test statistic for the User Model is 0.000
with 0 degrees of freedom, suggesting a perfect fit
to the observed dataset, which could indicate
overfitting. The CFI and TLI values of 1.000 also
indicate a perfect fit, but this could also be
problematic. Additionally, the RMSEA and SRMR
values of 0.000 reinforce the idea of a perfect fit.

Perfect values in several indicators (RMSEA,
CFI, TLI, SRMR) indicate overfitting, which could
affect the model's ability to generalize to new
datasets. Overfitting occurs when a model captures
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noise instead of relevant patterns, typically due to
model complexity or a large sample size.
Table 3. SEM results of the RF model
Estimator ML
Optimization method NLMINB
Number of model 13
parameters

Used Total
Number of 24292 31834
observations
Model Test User
Model:
Test statistic 0.000
Degrees of freedom 0
Model Test Baseline
Model:
Test statistic 2.776
Degrees of freedom 11
P-value 0.000
User Model versus
Baseline Model:
Comparative Fit 1.000
Index (CFI)
Tucker-Lewis Index 1.000
(TLI)
Loglikelihood and
Information
Criteria:
Loglikelihood user
model (H0)
Loglikelihood
unrestricted model
(H1)
Root Mean Square

18.579

18.579

Error of

Approximation:

RMSEA 0.000
90 Percent confidence 0.000
interval - lower

90 Percent confidence 0.000
interval - upper

P-value HO: RMSEA NA
<0.050

P-value HO: RMSEA NA
>0.080

Standardized Root

Mean Square

Residual:

SRMR 0.000

5.2 ANN-SEM model results

When training the ANN model, the classification
report presented in Table 4 was obtained, where it
is observed that the accuracy is 0.9926, meaning

that the model classified the events almost
perfectly. It can also be seen that the class
precision, recall, and Fl-score are high values
overall.

Table 4. ANN model results

Accuracy: 0.9926

Classification:  precision recall fl- support
score

Mechanical 1.00 0.97 0.99 372

Failures

Unscheduled 0.98 0.66 0.79 176

Operational

Others 0.99 1.00 1.00 9003

SHAP is used to obtain the most important
numerical variables for mechanical failures and
unscheduled operational stoppages.

Table 5. ANN Hypotheses most influential variables
for each event

Event Most Influential Variables
Ampere error Motor 2 + Ampere
Mechanical error Motor 1 + Temperature
Failures Transmite + Ampere Motor 1 DT +
% of Voltage Utilization
Temperature Transmits + Ampere
Unscheduled error Motor 1 + Ampere error
Operational Motor 2 + Performance Tons per

Shift + Temperature Transmits 2

The SEM model aligns well with the hypothesis
provided by the Neural Network model, with the
algorithm successfully converging after 44
iterations and identifying the optimal parameters.

From Table 6, it can be seen that the statistical
test for the fitted model is 173 with 4 degrees of
freedom, indicating a difference between the model
and the data. On the other hand, the Comparative
Fit Index (CFI) is 0.939, indicating a fairly good fit.
The TLI index, with a value of 0.772, is below 0.9,
which is reasonable given that this index penalizes
more complex models.

The RMSEA value is 0.036, which is below the
typical threshold of 0.05, indicating a good fit of
the model to the observed sample size. This is
reinforced by the 90% confidence interval of
[0.032, 0.041], which is also within acceptable
values. On the other hand, the SRMR value is
0.012, which is significantly low, indicating an
excellent fit of the model, as values below 0.08 are
generally considered good.

Table 6. SEM results of the ANN model
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Estimator ML
Optimization method NLMINB
Number of model 13
parameters

Number of observations 31834
Model Test User Model:

Test statistic 173
Degrees of freedom 4
P-value (Chi-square) 0.000
Model Test Baseline Model:

Test statistic 2.797
Degrees of freedom 15
P-value 0.000
User Model versus Baseline

Model:

Comparative Fit Index (CFI) 0.939
Tucker-Lewis Index (TLI) 0.772
Loglikelihood and

Information Criteria:

Loglikelihood user model 25.563
(HO)

Loglikelihood unrestricted 25.649
model (H1)

Root Mean Square Error of

Approximation:

RMSEA 0.036
90 Percent confidence 0.032
interval - lower

90 Percent confidence 0.041
interval - upper

P-value HO: RMSEA < 0.050 1.000
P-value HO: RMSEA > 0.080 0.000

Standardized Root Mean
Square Residual:
SRMR 0.012

Although some indicators like the TLI
suggest that the model is not completely perfect,
other results like CFI, RMSEA, and SRMR point
to the SEM model having an adequate fit. There
may be room for improvement in the fit, but the
results are good enough to consider that the model
captures significant relationships between the
variables. The causal relationships between the

different variables are shown below in Figure 2.
The arrows show the direction of the
relationships between the variables, and the
coefficients indicate the magnitude of the effect.
A negative coefficient (-0.08) between ADGE and
Unscheduled Operations (UO) suggests that as

ADGE increases, UO decreases. Negative
coefficients indicate inverse relationships, while
positive coefficients represent direct

relationships. Additionally, the arrow between
UO and Mechanical Failures (MF) with a
coefficient of -0.06 indicates a small negative
relationship, meaning that as UO increases, MF
tends to decrease slightly.

-0.08 vo

-0.15

0.25
-0.09
0.10 -0.06

-0.06
-0.05

0.10

-0.12
0.07 MF

Fig. 2. Relation between variables
The meaning of the abbreviated variables is
detailed in Table 7.

Table 7. Meaning variables
Abbreviation

Description Numeric

Variable
ADGE Temperature Transmits 2
CVft Performance Tons per
Shift

CVon % of Voltage Utilization
CVmp Ampere Motor 1 DT
ADO6A Temperature Transmits
CVOR3 Ampere Error Motor 1
CVor2 Ampere Error Motor 2

The results highlight significant differences in
the performance of the RF-SEM and ANN-SEM
models. While RF achieved near-perfect
classification accuracy (0.9984), its SEM model
exhibited signs of overfitting, as indicated by
perfect fit indices (CFI, TLI, RMSEA, SRMR).
This suggests that RF may be capturing noise
rather than generalizable patterns. In contrast,
ANN showed slightly lower classification
accuracy (0.9926), but its SEM model
demonstrated a more realistic fit (CFI = 0.939,
TLI = 0.772, RMSEA = 0.036, SRMR = 0.012),
indicating better generalizability. These findings
suggest that while RF provides high accuracy,
ANN-SEM may offer a more balanced trade-off
between performance and model interpretability.
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Future research  should

approaches.

explore  hybrid

6. CONCLUSIONS

The main objective of this research was to compare
the performance of the RF and ANN machine
learning models through SEM analysis, providing
a more robust view of which model better fits the
data. The SEM analysis played a key role in
validating the dependency relationships identified
by each model, revealing both the strengths and
weaknesses of both approaches.
The RF model showed overfitting, which
limited its ability to generalize to new data. This
overfitting, confirmed through SEM, showed that
the model was too closely fitted to the training data,
capturing noise rather than  meaningful
relationships. This emphasizes the importance of
using representative, high-quality data to prevent
the model from capturing spurious patterns. The
imbalance in the dataset, with only 1,944 instances
of mechanical failures and unscheduled
operational stops compared to 29,890 instances
that were neither of these, underscores the need for
diverse operational data in future research.
On the other hand, the ANN model showed
superior performance, achieving 99.26% accuracy
and effectively capturing the non-linear
relationships of the system. The dependencies
learned by the ANN model were validated through
SEM, providing a solid foundation for its
predictive capabilities.
This research demonstrates that ANN models
outperform RF in identifying the key variables that
affect failures in mining systems. By capturing
complex dependencies, the ANN model provided
more accurate predictions. This confirms the
critical role of SEM in verifying the generalization
and quality of machine learning model hypotheses,
offering a valuable tool for ensuring the robust
development of models.
In the future, the dependency relationships
discovered are expected to be applied in predictive
failure models, which could lead to improved early
alerts and preventive measures.
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