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Autonomous functions, systems, and operations are expected to play a significant role in a number of industries, 
including energy, process, and transportation. In these, human operator teams frequently monitor, supervise, and 
intervene in the system’s operations, acting as a safety barrier in the event of emergencies. As the Level of 
Automation of these systems increases, the need to study the Human-Autonomy Team’s (HAT’s) performance 
becomes fundamental. Recent developments in Automated Driving Systems (ADS) deployed for passenger 
transport services highlight the need to revisit assumptions about the role of remote operators performing driving 
assistance and emergency management tasks. While human factors research has explored the implications of human-
system interactions in ADS contexts for drivers, the focus on HAT dynamics is still incipient, particularly in remote 
operations. This work draws from remote control operations in nuclear, oil & gas, and maritime industries, aiming 
to model fundamental aspects of HATs in remote ADS operations. Thus, instead of only considering human-system 
interaction schemes, team performance models such as the Information, Decision, and Action in Crew (IDAC) 
context can be applied to study the developing HAT dynamics. This work explores the applicability of Performance 
Shaping Factors (PSFs) used in Human Reliability Analysis (HRA) models, identifying potential factors influencing 
the performance of both human and automated agents in remote ADS operations, focusing on the relationship, tasks, 
and challenges remote operators face when interacting with vehicles equipped with advanced ADS. 
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1. Introduction 

Autonomous systems are integrated into complex 
socio-technical systems operation across multiple 
industries (Akdağ et al., 2022; Gadmer et al., 
2021; Timotic & Netjasov, 2022). Efforts to 
enhance systems’ abilities to self-diagnose, 
regulate, and operate autonomously are driven by 
the goal of increasing efficiency and safety, as 
well as enabling new capabilities. This shift is 
also envisioned as a path to remove human 
operators from hazardous on-site locations. 
However, operators remain integral to supporting 
system safety and, for many systems, are expected 
to continue intervening remotely during 
operation. Therefore, developing methods that 
adequately represent the impact of human-system 

interactions on system safety are needed to ensure 
adequate system, procedure, and operation design 
(di Nardo et al., 2015). Recent research into 
human-system interaction has increasingly 
emphasized  collaborative and team-oriented 
dynamics, such as task division and allocation 
strategies, operators’ trust in automation, 
attention management, and the challenges 
associated with the explainability of the 
autonomous systems’ decisions (Lyons et al., 
2021). As systems achieve higher Levels of 
Automation, questions remain regarding the 
methods used to assess human-machine team 
performance (Mehak et al., 2024). 

Driving automation is categorized into six 
levels based on the division of  Dynamic Driving 
Tasks (DDTs) between a human driver and the 
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system (SAE International, 2021). At level 4 (L4), 
the Automated Driving System (ADS) is designed 
to execute all DDTs independently, without 
requiring human driver intervention, provided the 
system operates within its predefined operational 
design domain (ODD). While current L4 ADS 
developments primarily focus on driverless 
passenger transport, it is anticipated that remote 
human assistance will remain necessary for 
supporting vehicle and passenger operations in 
the near term (Kettwich et al., 2021). Remote 
monitoring, supervision, guidance, and 
intervention introduce many challenges from both 
technical and organizational perspectives 
(Mutzenich et al., 2021b). These tasks depend 
entirely on the information relayed through the 
control room’s human-system interface (HSI) 
subjected to network latency, connectivity 
reliability, and cybersecurity vulnerabilities 
(Kuru, 2021). Thus, evaluating the feasibility of 
remote operator interventions – and determining 
which tasks are appropriate – requires 
comprehensive modeling and analysis of the 
factors influencing the overall safety and 
performance of the system. 

This work explores the role, tasks, and 
challenges of remote operators supervising L4 
ADS fleets from a team-based perspective  
introduced in (Correa-Jullian et al., 2024b). 
Drawing from the Information, Decision, and 
Action in a Crew context (IDAC) cognitive 
model, the human-system interaction schemes 
and influencing factors are discussed, as well as 
their input to system modeling, data collection, 
risk assessments, and system design. 

  
2. Human Reliability Analysis and Human-

Autonomy Teams  

Human Reliability Analysis (HRA) has been an 
instrumental tool in risk management across 
sectors such as energy and process industries, 
offering both qualitative and quantitative insights 
to improve system, procedure, and operation 
design (Zarei et al., 2021). Operator teams play 
pivotal roles in complex system operations, and 
thus, team dynamics can significantly impact 
system safety. Research highlights that 
inadequate communication and coordination 
among team members are primary contributors to 
accidents and unsafe behaviors, rather than 
insufficient technical knowledge of systems and 

operational procedures (Ham et al., 2021; Kim et 
al., 2020). Frameworks such as IDAC use 
Performance Shaping or Influencing Factors 
(PSF/PIF) to express the impact of various 
elements on the probability of a Human Failure 
Event (HFE) (Chang & Mosleh, 2007). These 
factors span the Information, Decision, and Action 
stages (Fig. 1), including task complexity, 
attention, procedure quality, and system design. 
HRA methods support the identification of critical 
contributors to high-risk scenario development 
(Wang et al., 2023). To better account for the 
impact of team dynamics, the Team-Centered 
IDAC (Tc-IDAC) extended IDAC to examine how 
collective task allocation and error management 
affect team performance (Azarkhil et al., 2025a, 
2025b). 

The introduction of automation often aims 
to shift the human operator’s role from active 
controller to supervisor, primarily tasked to 
intervene in emergency situations. The concept of 
Human-Autonomy Teams (HATs) offers a 
framework for analyzing these interactions from 
a collaborative perspective. A HAT is defined as 
a team comprising at least one autonomous 
machine agent – expressing degrees of agency, 
interdependence, and proactivity – working 
alongside human team members to achieve a 
shared goal (Mosier et al., 2017; O’Neill et al., 
2023). Hence, HRA methods and tools, 
traditionally focused on human team dynamics, 
can be adapted to assess all agents within a HAT 
– human and autonomy – identifying and 
evaluating the factors influencing their 
performance with a comparable level of 
granularity. As a step towards developing an 
HRA-based HAT model, this work evaluates the 
applicability of existing PSFs and proposes new 
factors to describe the HAT’s performance. 

Fig 1: IDAC operator cognitive flow model.  
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3. Remote Operations for Automated Driving 
Systems 

The design of L4 ADS fleet operations can vary 
depending on the company managing the fleet, 
local legislation, and other factors, such as 
connectivity quality. This work adopts the system 
described in (Correa-Jullian et al., 2024a, 2024b), 
in which the fleet is supported by remote 
operators, who are trained and/or certified 
personnel responsible for overseeing passenger 
transport fleet operations from a control room (at a 
Fleet Operations Center). Their tasks may include 
providing preemptive or system-requested driving 
assistance, such as object classification and tactical 
driving commands, based on alarms and data 
transmitted by the ADS, with the additional 
pressures of wireless communication reliability 
and impaired perception conditions (Bogdoll et al., 
2022). The challenges these remote operators face 
differ substantially from on-board drivers, 
primarily due to their physical disconnection from 
the vehicle.  

To perform remote assistance tasks, 
operators must rely on video, audio, location, and 
other sensor data to assess the situation and issue 
waypoints or other commands to the vehicle 
(Mutzenich et al., 2021a). While high-automation 
driving systems are designed to execute fallback 
actions and achieve Minimal Risk Conditions, 
network latency remains a critical factor. In the 
event of automation failure or edge cases – 
especially those involving passengers – the 
remote operator may need to intervene to provide 
alternatives to the ADS’s fail-safe strategies 
(Goodall, 2020; Mutzenich et al., 2021b). The 
limitations of communication infrastructure 
further add to the difficulty of maintaining and 

regaining situational awareness during 
emergency situations, particularly under limited 
perception conditions (Tener & Lanir, 2022). Fig. 
2 illustrates the communication flow between the 
remote operator, the ADS-equipped vehicle, and 
the driving environment (‘World’), as well as the 
potential introduction of an ADS advisory to 
assist the remote operator. The interaction 
dynamics between remote operators and the ADS 
can have significant impacts on system, traffic, 
and passenger safety (Mutzenich et al., 2021b; 
Tener & Lanir, 2022). Although remote operators 
are intended to provide tactical support in non-
safety critical situations, real-world traffic 
scenarios may not allow for clear-cut distinctions 
or sufficient time to determine the potential risk 
levels. This implies additional design 
considerations for HSI, component redundancy, 
safety alarm systems, and extensive human 
factors integral to remote operators’ functions. 

 
4. Performance Shaping Factors 

Developing a team performance model informed 
by HRA literature requires analyzing and 
adapting/extending existing PSF nomenclature to 
represent both the remote operator and the 
automated system. While the decision-making 
processes of autonomous agents differ 
fundamentally from humans, their observable 
behaviors can still be influenced by internal and 
external factors, e.g., scenario and design 
elements. Effective error detection, indication, 
and correction within the team require shared 
mental models of system performance, as well as 
mutual performance monitoring, backup 
behavior, and team adaptability (Mosier et al., 
2017). 

 
Fig.2: Overview of remote operator-ADS fleet interactions.   
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Building on the hierarchy developed in 
(Groth & Mosleh, 2012), this section illustrates 
how PSF concepts can be applied to the remote 
operator-ADS HAT. PSF models, such as the 
ones developed in (Azarkhil et al., 2025b), can 
provide greater transparency into system-level 
decision-making by interpreting these dynamics 
through team interactions.  

 
4.1 Organization and system-based factors 
The organization-based and system-based factors 
are controlled by the organization operating and 
designing the system, respectively. Three 
potentially overlapping entities can fulfill these 
functions: the fleet operator, the ADS developer, 
and the vehicle OEM. Each organization’s 
overarching safety culture is reflected in its internal 
risk management policies and how responsibilities 
are managed. While these roles may be 
consolidated within a single organization, it is 
likely that as operations scale, fleet operators 
acquire the vehicles from external ADS developer-
OEM partnerships. For example, control room 
operations will likely be determined by the fleet 
operator and the ADS developer, the ADS design 
will depend on the ADS developer and/or the 
vehicle OEM. Organizational elements, such as 
workplace adequacy and task allocation, 
significantly influence the remote operator’s 
performance. One critical consideration is 
determining the operator-to-vehicle ratio based on 
performance goals and task complexity (Wu et al., 
2024). Similarly, research has focused on 
defining the limits of human capabilities and 
latency conditions to enable effective remote 
assistance across operational (e.g., accelerating), 
tactical (e.g., obstacle avoidance), and strategic 
(e.g., navigational planning) levels (Correa‐
Jullian et al., 2024). As with other complex 
engineering systems, ADS fleet operations will 
likely rely on the availability and quality of 
decision-support procedures. Thus, remote 
operator training programs and certification 
processes may become essential, depending on 
the task allocation and scheduling – potentially 
consisting of detecting and responding to ODD 
breaches, managing DDT fallback scenarios, 
post-incident management, and handling 
communications with passengers, first responders 
and law enforcement (Automated Vehicle Safety 

Consortium, 2024). While many behavioral and 
functional elements of ADS vehicles are fixed at 
design time (e.g., robustness of the design, 
verification, validation, and testing performance), 
some operational software and hardware elements 
may be periodically updated. These updates rely 
on the availability and quality of corrective action 
programs – i.e., how operational experience is 
incorporated as feedback into system 
improvement processes (Zhao et al., 2020). Such 
updates may alter task allocation and scheduling 
requirements, as well as the availability and 
quality of procedures, tools, or information 
necessary for effective task execution by both 
human operators and automated systems.  

 
4.2 Agent-based factors 
This category encompasses internal factors 
influencing an agent’s performance on an 
individual level, including attention, experience, 
and risk tolerance. While defined for operators in 
control room environments, many of these factors 
can be analogously applied to the underlying ADS 
design and problem-solving capabilities. 
Situational awareness and attention management 
have been extensively studied in control room 
operations (Kim et al., 2020). Attention – defined 
as an operator’s strategy to distribute available 
cognitive resources – can be conceptually mapped 
to the ADS’s resource allocation strategies, as 
shaped by its electrical/electronic architecture 
design (Askaripoor et al., 2023). Physical and 
psychological abilities pertain to an operator’s 
internal available resources to perform their tasks, 
including the level of alertness, fatigue, 
impairment, or physical attributes. Analogously, 
these factors correspond to the ADS’s resource 
availability, addressing how operational 
conditions impact system degradation (e.g., 
sensor or software reliability and calibration) and 
computational resource limitations such as 
energy, memory, and processing capacity (Zhang 
et al., 2023). Factors such as experience, 
knowledge, perceived familiarity, bias, skill, and 
risk tolerance integrate individual characteristics 
with cumulative organization and situation-based 
factors, such as training and prior interactions 
with the system. For the ADS, these factors are 
significantly shaped by design choices, 
verification and validation processes, and 
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software maintenance of the ADS. Consequently, 
the factor system maturity is proposed to account 
for (1) data exposure (e.g., dynamic 
environmental conditions, HD map accuracy, and 
driving behavior model sophistication), (2) 
testing performance (e.g., real-world scenarios, 
closed tracks, simulation), and (3) the extent of 
the certified ODD. Bias within the ADS may arise 
from the quality of the training data quality (data-
based bias), decision-making algorithm 
sophistication (algorithm-based bias), or sensor 
limitations under varying conditions (sensor-
based bias). Similarly, skill in the ADS context 
can be analyzed through its perception (e.g., 
hazard detection, localization), decision-making 
(e.g., path and maneuvers planning, risk 
assessment), and control capabilities (vehicle 
control precision and responsiveness) (Di & Shi, 
2021). Software architecture design can directly 
impact risk tolerance, from selecting safety 
margins or confidence thresholds to trigger 
automated fallbacks, or sensor fusion schemes 
impacting object and event detection and reaction 
tasks (Lodhi et al., 2023). This is particularly 
critical for rule-based decision making, traffic law 
compliance, and prioritizing safety based on 
contextual cues. While individual variations are 
not expected within the vehicle fleet, 
organizational policies for hardware and software 
will influence performance consistency (Correa-
Jullian et al., 2024a).  

 
4.3 Situation-based Factors 
These factors represent the influence of scenario 
development on an agent’s performance. Broadly, 
these can be categorized into factors related to 
observable scenario characteristics and those 
addressing the agent’s perception of the scenario. 
Observable scenario’s characteristics include 
elements such as the external environment, the 
presence of conditioning events, and task 
complexity. In this context, the external 
environment refers to driving conditions (e.g., 
weather, road geometry, traffic density) and 
interactions with other road users (e.g., vehicles, 
cyclists, pedestrians). Remote operators must also 
account for factors within the control room, 
including limited perception and communication, 
capabilities, as well as passenger activity (e.g., stop 
requests). Conditioning events encompass latent 
failures and alert-triggering events, such as ODD 
breaches, vehicle malfunctions and connectivity 

failures, which may require DDT fallback 
responses and/or appropriate intervention by the 
remote operator. Task complexity refers to the 
overall difficulty in diagnosing scenarios and 
executing tasks based on the knowledge, 
procedure, and precision required, as well as the 
ambiguity of the situation and task switching – the 
latter highly dependent on the selected operator-
to-vehicle ratio. For the ADS, task complexity 
extends to the computational demands, such as 
tasks performed within the ODD or in response to 
an ODD breach and contextual factors (e.g., road 
geometry, traffic density, weather conditions) 
increasing maneuvering difficulty.  

Factors addressing the agent’s perception of 
scenario development include latency, interface 
design, and communication issues which can 
significantly affect operator performance by 
increasing task, information, and time load. These 
are particularly acute during incident 
management or when supporting the ADS in 
ambiguous scenarios (Automated Vehicle Safety 
Consortium, 2023). Additional perception-based 
factors affecting the remote operator include 
stress and perceived urgency, severity, and 
decision responsibility. For the ADS, these 
factors may be more accurately expressed through 
the aforementioned risk tolerance factor, defined 
by the risk metrics and safety margins guiding its 
decision-making process. Similarly, the proposed 
resource availability captures the ADS’s 
perceived information and time loads, where 
capacity limitations of conflict-resolving 
algorithms in data processing, localization, and 
planning tasks may lead to unreasonable latency 
and unsafe action execution. 

 
4.4 Team Factors  
Adopting a team perspective in automation-heavy 
systems can enhance problem-solving resource 
availability, enabling a layered approach to safety 
and greater adaptability across diverse scenarios 
(Azarkhil et al., 2025a, 2025b). To fully leverage 
the complementary capabilities of HATs, system 
designers and operators must address key factors 
influencing team dynamics, including social and 
functional cohesion and role awareness, 
communication, and leadership within the team 
(Ham et al., 2021). Individual team-behaviors, 
such as team cohesion and role awareness, are 
likely more applicable to human operators, 
shaped by their training, experience, and 
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perception of the ADS’s capabilities. The degree 
of an operator’s trust in the system will also be 
determined by the calibration of alarms and time-
based triggers for interventions – considering the 
time required for a successful operator’s 
intervention and robust system performance in 
scenarios where unsuccessful interventions pose 
unacceptable risks. Indeed, role awareness – the 
attitude towards the team’s roles, responsibilities, 
and goals – may be critical under emergency 
situations. In this regard, conflict management 
between multiple operators and ADS fleet 
vehicles raises additional concerns in relation to 
the role of leadership and decision hierarchies 
(Correa‐Jullian et al., 2024). This factor is 
particularly important in procedure-intensive, 
control room-based operations. Although 
frequently considered a system-based factor, fleet 
management contexts may warrant the explicit 
consideration of HSI design and availability as 
team communication factors (Azarkhil et al., 
2025a, 2025b). However, only aspects of 
communication quality and effectiveness would 
fall under this category, as message format, mode, 
and content are determined by design (Xing et al., 
2021). All these elements significantly impact 
team coordination and the likelihood of achieving 
overarching safety and mission goals (Fig.3) 
(Azarkhil et al., 2025b). This factor reflects task 
interdependence between the ADS and the remote 
operator, observed through indicators such 
engagement rate, responsiveness, and task 
quality. It involves the division of responsibilities 
and teamwork in planning, scheduling, and action 
implementation (Ham et al., 2021; Lyons et al., 
2021).  

 
5. Discussion 

As driverless passenger services scale, operational 
data can help refine the roles and responsibilities of 
human operators involved in ADS operations. 
Comprehensive risk assessments that incorporate 
both system and operator performance are essential 
to support safe operations and inform data-driven 
safety policies. HRA methods and team 
performance models, accounting for the influence 
of PSFs across organizational, individual, team, 
system, and scenario levels, can support safety 
metric and risk-based criteria development to 
guide operator intervention, building robust 
operational risks management mechanisms 
stemming from causal human-system interaction 

models. Insights from real-world operations—
such as error patterns, operator response times, 
and ADS system performance under various 
conditions—can inform updates to training 
programs, interface designs, and decision-support 
tools, supporting system improvement alongside 
continuously evolving operational environments. 
In this regard, tools such as system dynamics-
inspired causal effect diagrams, system-theoretic 
process analysis and concurrent task analysis pose 
powerful avenues to model and simulate complex 
socio-technical system behaviors (Correa-Jullian 
et al., 2024a; di Nardo et al., 2015).  

Adopting a team-based perspective for 
operator-ADS relationships introduces a wide 
breadth of tools, literature, and technical language 
that enhance system interpretability. This 
approach highlights the impact of ADS design on 
the overall system’s safety and the value of 
remote operator interventions, as opposed to 
characterizing operators only as technology users 
(Walliser et al., 2019). While research efforts 
have focused on driver reaction times in shared 
autonomy settings, it is crucial to extend these 
studies to remote operators, studying potential 
involvement in operational, tactical, and strategic 
decision support. By treating the ADS and the 
operator as a cohesive HAT, the system can be 
designed to actively manage and compensate for 
mutual errors, exchange information and 
commands effectively, and mitigate common 
team-level challenges such as miscommunication 
or misinterpretation. As with other HRA 
approaches, validation remains a challenge, 
considering the limited data collection initiatives 
focused on remote supervision operations. 
However, pursuing a team-based and data-
supported approach can become key for ADS 
operation design to maintain high levels safety 
and mission success. As the paradigm of control 
room operations for ADS evolves, it will be 
fundamental to share insights across other 
industries aiming to define the supervisory risk 
tasks of human operators (Veitch & Andreas 
Alsos, 2022). 

 
6. Conclusions 

While remote operators may play a role in 
managing risks of ADS fleet operations, increased 
research and data collection efforts are needed to 
determine system requirements to support their 
tasks – including connectivity, task, procedure, and 
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workplace design. This work introduces a HAT 
perspective on remote operator’s interactions with 
L4 ADS and explores the applicability of HRA-
based PSFs, building towards the development of 
a risk-informed team performance model tailored 
to ADS operations  
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