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As the requirements for technically complex products and their functionality increase, product complexity continues
to rise. At the same time, development times and costs must be reduced to ensure that technical products remain
marketable. This leads to an increase in possible damage causalities and potential field failures. This applies in
particular to the development of new markets, such as electromobility in the light vehicle sector, known as light
electric vehicles (LEVs). The battery systems installed in these vehicles harbor a comparatively high risk of function-
and safety-critical failures. These present companies with new challenges when operating product fleets in the private
and commercial sectors due to the high level of safety and reliability required. To reduce the risk and increase the
reliability of LEVs in the field, analysing product data from the field is highly relevant in order to be able to predict
the remaining useful life. One way of supporting the reliability analysis process during the utilisation phase of the
product life cycle is to simulate and prognose the further use of a product or a product fleet. The existing and
simulated usage data can then be used for forecasts regarding the remaining useful life of products. This paper
presents the results of a feasibility study in which a concept for the multivariate simulation of product fleets based
on usage data from the field is applied in the context of LEVs. Field data from a Kumpan electric 54 e-moped, which
was recorded over a period of several days, serves as the data basis. The available data was analysed and used for the
multivariate simulation. Finally, the simulation results were compared with the original data and a conclusion was
drawn.
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1. Introduction

The development of technically complex products
is associated with increasing requirements and
functionalities, which means that product com-
plexity is constantly on the rise. At the same time,
development times and costs must be continu-
ally reduced in order to make the products mar-
ketable. This increases the risk of possible causes
of damage, potential field failures and the asso-
ciated complaints and recalls campaigns. Product
development and market support for technically
complex products therefore face major challenges
in terms of safety and reliability. This is partic-
ularly true for the development of new markets

where, for example, it is not possible to draw
on the knowledge and technologies of previous
product generations, such as electromobility in the
field of light vehicles (e.g., e-scooters or electric
bicycles), also known as Light Electric Vehicles
(LEVs).

As the sustainable transport transition towards
electromobility progresses, the importance of
LEVs in urban areas for the commercial and pri-
vate sectors is also increasing. The global market
share of LEVs is forecast to increase from USD 88
billion in 2023 to USD 225 billion in 2033 (To-
wards Automotive, 2024; Precedence Research,
2024). For example, the battery system installed
in LEVs carries a relatively high risk of functional
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and safety-critical failures and, in the worst case,
can lead to thermal runaway and the burning of the
vehicle. The Europe-wide RAPEX system (Rapid
Exchange of Information System / Safety Gate)
has already been used in the past to recall e-
scooters from several manufacturers due to the
risk of injury, burns and fire (LEVA-EU, 2023).
These present companies with new challenges
when operating product fleets of LEVs in the pri-
vate and commercial sectors due to the high level
of safety and reliability required.

In order to counteract the risk of failures in the
field, it is advisable to include information from
the field in the analysis of the LEVs. For example,
multivariate analysis of the remaining useful life
of individual vehicles or entire vehicle fleets can
be carried out taking into account various lifespan
variables from the field. The stochastic simulation
of usage data from the field can be used decisively
here in this process. By simulating the vehicle
usage, for example, it is possible to check whether
the vehicle is a potential candidate for a particular
damage causality (Reinecke, 2021). In addition,
the remaining useful life can be determined more
precisely on the basis of the simulated usage data.

In this paper the implementation of a concept
for the multivariate simulation of products and
product fleets based on the Monte Carlo Method
in the context of LEV usage data is presented. In
Chapter 2, an overview of stochastic simulation
based on the Monte Carlo method and its appli-
cation to field data simulation is shown. The case
study, the simulation of LEV usage data, is pre-
sented in Chapter 3. The analysed LEV usage data
was recorded over a period of several days and
contains multiple signals and is based on recorded
trips of a Kumpan electric 54 e-moped. Chapter 4
presents the results of the case study and Chapter
5 concludes with a summary of this work.

2. Baseline

Stochastic simulation using the Monte Carlo
Method (MCM) is an important tool for modelling
and analysing technically complex products due
to its ability to represent a closer adherence to
a reality (Zio, 2013). MCM uses random sam-
pling to simulate the behavior of random systems

on the computer by randomly generating system-
describing variables (Christiane Lemieux, 2009).
The fundamental aspect of MCM is the genera-
tion of pseudo random numbers from a U[0, 1]-
uniform distribution. To ensure the randomness
of the generated numbers, a suitable algorithm or
generator is used to generate the random num-
bers. Algorithms such as the inversion method, the
composition method or the rejection method are
used (Zio, 2013; Waldmann and Helm, 2016). Be-
cause of its capabilities, MCM is used in many ar-
eas of science, including physics, finance and en-
gineering (Christiane Lemieux, 2009; Waldmann
and Helm, 2016).

In the last decade, several papers have been
published in the domain of field data simulation
based on MCM. In (Feijéo et al., 2011) a de-
veloped method for the simulation of correlated
wind speeds is presented, where the MCM is used
to generate wind speed series based on speci-
fied distribution functions for different locations.
In (Feijéo and Villanueva, 2016) an overview of
methods for the simulation of wind speed time
series is given. In particular, the simulation based
on descriptive wind speed distribution functions is
discussed.

In (Subbiah and Turrin, 2015) and (Turrin et al.,
2015), a data-driven Monte Carlo simulation ap-
proach was presented that can be used to predict
the health status and remaining useful life (RUL)
of a product based on its condition monitoring
data.

Additionally, Hienzsch (2016) and Hinz et al.
(2016) developed two methods for simulating
field data on a univariate basis in the form of
time series. The simulated time series include the
driving speeds of different vehicles. In the work,
the simulation is based on alternating extrema and
the polynomials fitted in between using MCM.
In the second paper, the journeys are simulated
on the basis of data transformed by the discrete
Fourier transform and the resulting frequency and
amplitude values using the MCM. Both methods
were presented using case studies from the auto-
motive industry.

In the simulation concept developed by
Reinecke (2021) based on the MCM, multivariate,
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stochastic relationships between the signals can be
taken into account on the basis of correlation anal-
yses and classification models. This allows special
usage states (e.g., longer dwell times at the same
speed) to be modelled, as well as dependencies
between historical and current values. Compared
to the work presented above, this enables a prog-
nosis of the usage states at product and fleet level
(Reinecke, 2021).

3. Case Study: Multivariate Simulation
of Light Electric Vehicle Usage Data

This chapter presents the case study ‘Multivari-
ate simulation of LEV usage data’, which was
carried out in this work. The underlying data is
first presented in section 3.1. The method used
for the simulation, the simulation concept of Rei-
necke (2021), is then presented and fundamentally
explained (cf. section 3.2). Finally, the underlying
LEV usage data is analysed and prepared for the
simulation (cf. section 3.3).

3.1. Base of operation

The underlying LEV usage profiles are derived
from the usage of a Kumpan electric 54 e-moped,
whose journeys were recorded for various param-
eters using external hardware and software. For
data recording, the CANedge2 Logger (manufac-
turer: CSS Electronics) was utilised. The logger
was connected to the vehicle’s CAN bus system.

CAN bus data was collected via soldered wires
on the vehicle’s wiring harness near the battery
connections. The installation was based on the
schematics and technical specifications provided
by the manufacturer of the Kumpan electric 54
e-moped. A total of three loggers were used si-
multaneously. The data is stored on the logger’s
internal 64 GB memory card. These are unpro-
cessed raw CAN bus signals that require further
interpretation before analysis. The logger includes
a WLAN interface, which connects automatically
to known networks. An S3 file server, compatible
with the logger, was used for data transmission.
Data recording was performed at sampling rates
of 10 Hz and 1 Hz.

The recorded raw data was translated into
physical values using a CAN Bus Database
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File (DBC). This conversion was automated us-
ing the ASAM MDF software application. The
physical measurement data was subsequently
stored in a time-series database (InfluxDB). This
database enables effective visualisation of data us-
ing Grafana. Based on the data stored in InfluxDB,
driving profiles were automatically generated for
each ride. Calculated driving profiles were stored
together with a pseudonymised user ID in a rela-
tional database for further analysis.

The database comprises 16 rides that were
recorded continuously over a period of four days
and approx. 98 hours. Signals from 13 different
parameters were recorded for the rides. Table 1
shows the various recorded parameters, which in-
clude both parameters at the battery system level
and parameters at the overall vehicle level. The
signals were recorded at a frequency of 2 Hz
(500 ms), therefore almost 319,000 data points
are available for each parameter. The data set was
manually extended by the parameter Timestep,
which takes into account the time in whole steps
and is needed for the simulation.

Table 1.: The recorded parameters and their units.

Parameter Unit
Battey_Current_1 [mA]
Battey_Current_2 [mA]
Battey_Current_3 [mA]
Battery_Temperature_1 [°Cl
Battery_Voltage_1 [V]
Battery_Voltage_2 [V]
Battery_Voltage 3 [V]
Brake_Light inary
Motorcontroller_Temperature [°C]
Odometer [m]
Remaining_Distance [km]
Speed [km/h]
Torque [%]
Timestep -

3.2. Methodology

The multivariate simulation of LEV field data
presented in this paper is based on the simulation
concept of Reinecke (2021). This chapter gives
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a short overview of the concept. The simulation
concept is separated into the four sub-aspects,
preparation of the data and simulation plan, the
simulation of values used in the concept, the uni-
variate simulation of stochastic independent vari-
ables and the multivariate simulation of stochastic
related variables. A more detailed description can
be found in the corresponding paper.

3.2.1. Preparation

The first step involves analysing and preparing
the underlying signal and sensor data in the form
of time series in order to prepare them for the
simulation. This involves identifying implausible
characteristics in the underlying data and imputing
missing data points in order to generate consistent
time series without impurities.

In order to be able to map and simulate different
usage states in the concept, these are determined
from the time series using the k-means clustering
algorithm (Hartigan and Wong, 1979). For this
purpose, the time series are segmented into sec-
tions of defined length and their stochastic char-
acteristic values (e.g., mean, median, standard de-
viation) are grouped into the various usage states
by the cluster algorithm. The evaluation is carried
out using the elbow criterion (Thorndike, 1953) to
find the optimal number of usage states.

The simulation is carried out using a simulation
plan, which defines the sequence of the parameters
to be simulated, and the input parameter required
for each simulation of a parameter. The starting
point for the simulation plan is a hierarchical
cluster analysis (here: agglomerative clustering
with the single linkage method) of the underlying
parameters in order to determine the correlations
between the variables on the basis of the spear-
man correlation factor. Based on the correlation
distance values, the variables are then categorised
into groups to be simulated independently. Within
each group, the simulation sequence is selected
according to the correlation between the variables.

3.2.2. Simulation of target parameters in both
concepts

The simulation of target parameters, which is used
in both simulations concepts, is based on the in-

version method for discrete random values and
the empirical distribution function of the original
values in the respective usage state. To account
for distances between the value to be simulated
and its k-nearest neighbours (cf. section 3.2.1) in
the usage state, the distribution function is adapted
according to the spatial distance between the dif-
ferent values.

3.2.3. Univariate Simulation

The univariate simulation is used when no param-
eter (within the corresponding group) has been
simulated before or when there is no stochastic
dependence on other parameters. The univariate
simulation consists of different sub-simulations.
Firstly, the previously determined usage states
are simulated. This is done on the basis of the
sequence of state changes between the different
usage states, using it to simulate the next state
sequence. For each simulated state, an extreme
point simulation is performed, alternately simu-
lating minima and maxima. Finally, the values
between two extreme points are simulated with
interpolated cubic splines. The result is a simu-
lated time series of the underlying variable with
its specific characteristics.

3.2.4. Multivariate Simulation

The multivariate simulation is used if influenc-
ing variables have already been simulated for the
target parameter, which allows the inclusion of
stochastic correlations between the target and the
influencing parameter. In the first step, a classi-
fication model is trained for the identified usage
states (cf. section 3.2.1) of the target parameter on
the basis of the most highly correlated influencing
parameters. For this purpose, a decision tree ac-
cording to the C4.5-Algorithm (Salzberg, 1994) is
used. Based on the classification model, the usage
states of the target parameter to be simulated are
then classified on the basis of the segmented time
series of the influencing parameters. The simula-
tion of the target parameter begins with the ran-
dom selection of a starting value from the original
values of the parameter, for which the original and
the classified usage states are identical. Starting
from the initial value, the following values and
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corresponding dwell times are simulated. The re-
sult is a simulated time series of the target vari-
able, taking into account the dependencies on the
influencing variables.

3.3. Data Analysis and Simulation
Preparation

Prior to the multivariate simulation, several steps
are taken to prepare the data for simulation. First,
the parameter signals are cleaned of erroneous val-
ues. This applies in particular to sections between
the rides, as implausible, missing and incorrect
values were recorded by the recording system.
The two parameters Motorcontroller_Temperature
and Remaining_Distance are heavily affected by
this type of errors, so they are completely removed
from further consideration. Additionally to these
two parameters, the parameter Odometer was also
removed from the simulation in order to determine
the distance travelled based on the speed over
time.

After data preparation, the simulation plan is
generated according to the methodology described
in section 3.3. The spearman correlation analysis
performed for this purpose shows that the three
voltage parameters are very strongly correlated
(r = 0.96 and » = 0.99). In order to reduce the
simulation time without losing much information,
only the parameter Battery_Voltage_I is used for
the simulation in the following. Compared to this,
The parameter Brake_Light has a low correlation
with the other parameters, which results in a high
dividing line within the hierarchical agglomera-
tive clustering algorithm (cf. figure 1).

If a spearman correlation of |r| > 0.25 is
chosen for the classification of the simulation
groups according to Reinecke (2021), the parame-
ter Brake_Light is divided into a single cluster and
simulated univariate. To further reduce the simu-
lation time, the parameter Brake_Light is also not
simulated due to lack of multivariate correlations
with the other parameters. This means that only
the right cluster is used for the simulation, which
reduced the number of parameters to be simulated
to seven.

Starting from one parameter, which is simulated
univariate and forms the basis of the simulation,
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Fig. 1.: Hierarchical agglomerative clustering
based on the spearman distance of the recorded
parameters. The parameters are splitted at a dis-
tance of 0.75 (blue line).

all other parameters in the cluster are then sim-
ulated according to their correlation with the in-
fluencing parameter using the multivariate simula-
tion concept. The overall simulation is carried out
in two steps: Firstly, only 70% of the parameter
signals are used for the simulation. Some simula-
tions are carried out for validation and compared
with the remaining 30% of the signals. In the sec-
ond step, after evaluating the simulation results,
the entire simulation was carried out, which can
then be used for further investigations.

4. Results

The results of the case study are presented in this
chapter, focusing on representative data from the
first simulation step and a comparison between the
final 30% of the original signal and the simulated
signals. A total of 17 simulations were carried out
to validate the simulation results. Figure 2 shows
a segment of the original usage profile (high-
lighted in blue) based on the distance and the 17
usage profiles simulated from 70% of the signals.
The simulated usage profiles show plausible be-
haviour compared to the original profile, whereby
the larger proportion achieves a greater distance
with a similar number of rides. The downtimes
between rides were also mapped to a suitable
amount.

A similar behaviour can be identified by com-
paring the simulated signals and the respec-
tive original signals. Figure 3 shows the orig-
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Fig. 2.: Segment of the travelled distance of the
original and the simulated usage profiles.

inal and simulated signals for the parameters
Battery Voltage_1 (a) and Battery_Temperature_1
(b) in red and green respectively. In (a), the char-
acteristics are adequately simulated. The individ-
ual voltage drops and the continuous slight noise
can be seen in both curves. A sudden rise in the
original voltage curve at around 125,000 seconds
is not simulated in the short segment, but can
be found in the other parts of the simulations.
In addition to the voltage signal, the character-
istics of the signals and the specific operating
and standstill times have also been modelled ac-
curately for the other parameters. The only ex-
ception is the parameter Battery_Temperature_l,
which shows greater fluctuations in the simulation
(cf. figure 3 (b)). One possible cause can be found
in the upward trend of the temperature signal due
to the many rides in the short recording time,
which prevented the battery system from cooling
down completely. According to Reinecke (2021),
the simulation concept cannot be used for trended
parameters, which is the case here and could lead
to poor results.

To analyse the correlations between the orig-
inal and simulated signals, a correlation ma-
trix based on the spearman correlation is used
to plot the correlations between all parameters.
The correlation matrices are shown in figure 4.
The improvable simulations of the parameter
Battery Temperature_1, are also reflected in the
corresponding correlations with the other param-
eters. The correlations with the Timestep and the
current parameters cannot be correctly reproduced
by the simulations. The correlations between the

— simulation
— original

Battery_Voltage_1

116000 118000 120000 122000 124000
Time [s)

(a)

375 — simulation
—— Original

Battery_Temperature_1

116000 118000 120000 122000 124000
Time [s]

(b)

Fig. 3.: (a) Segment of the comparison between
the original (red) and simulated (green) signals
for the Battery_Voltage_1 parameter; (b) analo-
gous comparison for the Battery Temperature_1
parameter.

parameter Battery Voltage 1 and Timestep are
also in need of improvement. A possible expla-
nation for the weak correlations is the simula-
tion plan division using hierarchical agglomera-
tive clustering (cf. figure 1). The three param-
eters mentioned above show weak correlations
with the other parameter group, which is close
to the chosen limit of || > 0.25. However, as
their correlations distances are below the selected
limit, all parameters are joined in a simulation
group. The division into an independent simu-
lation group could possibly improve the corre-
lations of the parameters Battery_temperature_I,
Battery_Voltage 1 and Timestep. The correlations
of the other parameters, in particular for Speed and
Torque, were simulated with high accuracy.

After validating the simulations with the last
30% of the original signals, finally a total of 84
simulations are carried out on the basis of the
original usage profile, presenting different pos-
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Fig. 4.: Comparison of the spearman correlation

simulated signals (right).

sible prospective usage profiles for the user in
the given dataset. Each of the 84 simulation con-
tains the individual simulations for each param-
eter. Figure 5 shows the final result of the case
study, exemplified by the travelled distance of the
original dataset in blue, as well as the subsequent
simulated distances on the basis of the original
dataset. Since the travelled distance is not simu-
lated directly (cf. section 3.3), it is calculated as
the simulated speed over time.

The multivariate simulation shows overall pos-
itive results for a first simulation of LEV usage
data within the case study, which can be further
optimised by more investigations.

5. Summary and Outlook

In this study, a multivariate simulation of LEV
usage data from several signals and the predic-
tion of a usage profile was carried out, which
can be used for field and usage failure analy-
sis. For the presented case study, the simulation
concept from the work of Reinecke (2021) was
used, where stochastic relationships are taken into
account in the simulation using different classifi-
cation and clustering methods. Overall, the usage
profile was simulated well and the specific char-
acteristics (e.g., usage and downtime) of the dif-
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matrices between the original signals (left) and

ferent signals could be accurately mapped in the
simulations. A correlation analysis also showed
that the mapping of the correlations between the
parameters was taken into account and simulated
well. The correlation for the time and the parame-
ter Battery_Temperature_1 show potential for im-
provement. Further in-depth investigations, espe-
cially in the analysis of the underlying data and the
generation of the simulation plan, would further
optimise the simulation results.

The simulation is based on 16 rides recorded
over four days, which may represent a small
amount of data for the simulation, for example, the
correlations may fluctuate more due to the small
database. Further analysis of other case studies
and larger amounts of data would also improve the
simulation results.
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