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Abstract: In our digital society, the resilience of telecommunications networks is crucial to ensuring reliable
connectivity. These networks face growing challenges, including accelerated obsolescence and the unavailability
of essential components, often amplified by supply chain issues. These risks threaten network stability and can
lead to service disruptions if not properly anticipated and managed. Our research focuses on predicting the risk
of obsolescence and unavailability of server components, a major concern for the Orange group. However, the
obsolescence risk of a server is not solely determined by its age but also by the age of its components, as each
part has its own life cycle, which may vary depending on the manufacturer. Our approach involves using graphs to
model the dependencies between components and assess the system’s overall obsolescence risk. By leveraging Al
and predictive analytics, we aim to anticipate the obsolescence or unavailability of individual components, providing
crucial insights for proactive management.
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1. Introduction

The resilience of telecommunications networks
is essential to maintain client satisfaction in var-
ious sectors, including individuals, businesses,
and government institutions. This resilience de-
pends not only on the network’s ability to recover
quickly from failures or cyberattacks Fehling-
Kaschek et al. (2020) but also on the immediate
availability of replacement components required
for corrective and preventive maintenance. How-
ever, the progressive obsolescence of equipment
and uncertainties around the availability of spare
parts pose significant challenges Schulze et al.
(2012). If not addressed, these issues can lead to
prolonged outages and potentially impact client
loyalty.

The aim of this study is to develop predictive
models to anticipate the risk of obsolescence or
unavailability of critical server components. As
outlined by Devereaux (2010), addressing obso-
lescence issues can involve the following steps:

e Identifying and validating a replacement
of a server or component within internal
processes.

e Purchasing and payment processing for
the new server.

e Awaiting delivery.

e Physical installation of the equipment
and the necessary software configura-
tion.

To ensure operational continuity, it is essential
to set time thresholds between the estimated obso-
lescence date of components and the installation
of new equipment Devereaux (2010). Proactive
planning is crucial to mitigate the risk of stock
shortages and prevent sudden activity halts due to
resource unavailability. By defining obsolescence
scenarios and modeling the dependencies among
server components, this research aims to enhance
network resilience and ensure service continuity
in the event of component failure.

2. State of the Art
2.1. System Obsolescence

Obsolescence refers to the process by which
equipment, components, or technology become
outdated, inefficient, or unsuitable for continued
use [EC (2024), typically due to technological
advancements, wear and tear, or the unavailabil-
ity of replacement parts. This phenomenon can
have significant consequences, including reduced
observed reliability, increased maintenance costs,
and possible service interruptions. In many sec-
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tors, obsolescence is a major challenge that re-
quires proactive anticipation and management to
ensure operational continuity Bartels et al. (2012).

Obsolescence thus affects a wide range of sys-
tems, each presenting specific challenges based on
their role within various industries. Several exam-
ples illustrate the impact of obsolescence across
different sectors, including transport, aviation, ar-
maments, and technology Bartels et al. (2012).

In both data centers and telecommunication
networks, obsolescence poses significant chal-
lenges due to rapid technological advancements
and evolving industry standards. Core infrastruc-
ture components—such as servers, routers, and
switches—face obsolescence as newer, more effi-
cient models are developed. Within servers, criti-
cal internal components like processors and RAM
also become outdated, further complicating main-
tenance and upgrade strategies. This progression
can lead to higher operating costs and more com-
plex compatibility issues Karagiannopoulos et al.
(2024). For data centers, obsolete components
risk slowing operations and causing extended
downtimes if spare parts or replacements are un-
available during failures Schulze et al. (2021).
Similarly, in telecommunications networks, out-
dated equipment can disrupt connectivity, impact-
ing service continuity and customer satisfaction
across sectors. Maintaining these systems involves
balancing performance with the ongoing need for
compatibility and reliability amidst the pressures
of obsolescence.

2.2. 5G Networks

The deployment of 5G networks represents a sig-
nificant advancement in telecommunications, of-
fering faster speeds, lower latency, and enabling
a wide array of new services Huawei (2016). The
5G infrastructure contains advanced technologies
such as dedicated servers, base stations, fiber op-
tics, and edge computing. These components col-
lectively support the surge in connected devices
and data, accommodating applications like IoT
and augmented reality.

The architecture of the 5G network is based
on virtualized or containerized network functions
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(VNF or CNF), as shown in Fig. 1. User appli-
cations, such as calls, video streaming, or web
browsing, serve as the primary interface for end
users. Cloud-native functions (CNF) handle the
essential tasks of the network, including connec-
tion and resource management. Each CNF con-
sists of multiple microservices or CNF compo-
nents, which are small software modules encapsu-
lated in containers and hosted on physical servers
BasuMallick (2022). To allocate these microser-
vices to servers, affinity or anti-affinity rules are
applied, determining whether certain microser-
vices should be grouped on the same server or dis-
tributed across different servers. These microser-
vices communicate with each other through mes-
sage exchanges, making stable connectivity be-
tween physical servers essential. Fig. 1 illustrates
an example of CNF deployment in a data center,
demonstrating how these elements integrate into
the overall 5G network infrastructure.

Next, the hardware consists of physical servers.
These servers host the containers and microser-
vices, providing the computational power required
to run the network’s services BasuMallick (2022).
Finally, the connectivity component is built on the
spine-leaf architecture. The spine refers to central
switches that facilitate communication between
different parts of the network. These switches
connect to all other network equipment but do not
connect directly to each other. Their primary role
is to manage data flow between servers and other
network resources Gillis (2022). Leaf switches, on
the other hand, connect directly to the physical
servers and act as entry/exit points for data moving
to or from the network’s central backbone Gillis
(2022). They are responsible for managing data
flows intended for end-users.

2.3. Modeling of complex systems

Modeling relationships between data is a key area
for understanding and leveraging complex depen-
dencies in systems. Various tools and approaches
have emerged to model these relationships ef-
ficiently, including Graph Neural Networks Wu
et al. (2021), knowledge graphs Buchgeher et al.
(2021), Bayesian networks Soltan et al. (2019),
and Markov chains Borgonovo et al. (2000). In
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this context, we have chosen to focus specifically
on knowledge graphs, as they offer a powerful
framework for capturing and representing com-
plex interdependencies within systems.

2.3.1. Graphs for complex systems

Graphs are a powerful tool for modeling and
managing complex systems, particularly in rep-
resenting the interactions and interdependencies
between their components. They enable the depic-
tion of both the constituent elements of a system
(as nodes) and the relationships linking them (as
edges). This type of representation is widely ap-
plied in fields such as systems engineering, critical
infrastructure management, and predictive main-
tenance Chen et al. (2020).

In a graph, nodes represent the components or
subsystems within the overall system, while edges
symbolize the interactions or dependencies be-
tween these components Chen et al. (2020). These
edges can be directed or undirected, depending on
the nature of the relationship:

e A directed edge (with an arrow) indicates
an asymmetric relationship, such as data
transfer or functional dependency.

e An undirected edge is suited for a sym-
metric relationship, such as compatibility
between two components.

For instance, a graph could represent a relation-
ship such as:

(CPU, consumes_power_from, Power_Supply)

Where the arrow expresses a unidirectional depen-
dency. Conversely, a relationship like:

(RAM, compatible_with, Motherboard)
It can be represented by an undirected edge.

In the context of IT systems or networks, sev-
eral types of dependencies can be modeled using
edges:

(1) Data transfer: for example, between a pro-
cessor and a network card.

(2) Energy dependency: such as a hard drive
depending on the power supply.

(3) Software compatibility: the relationship be-
tween a firmware version and hardware.

(4) Interference or contention: when two com-
ponents share a common resource.

These dependencies capture critical interac-
tions that influence the overall functioning of the
system.

The orientation of edges adds an essential di-
mension, enabling the modeling of impact direc-
tionality. For example:

e An obsolete component may affect another
downstream in a processing chain.

e A power supply failure could disrupt all com-
ponents it powers.

By leveraging the modularity and flexibility
of graphs, new relationships can be added, or
the structure can be reorganized as the system
evolves. This makes graphs particularly suited to
dynamic infrastructures such as 5G networks or
data centers.

3. Methodology

In the 5G network chain illustrated in Fig. 1, this
paper focuses on the physical server. To eval-
uate the health status of the server, we follow
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the methodology described in the following para-
graphs. We start with data selection, followed
by obsolescence prediction, graph representation,
and health evaluation based on different scenarios.

3.1. Component Mapping and Data
Sources

Server components can be classified into two cat-
egories: those that remain available on the market
(continued components) and those that are already
obsolete (discontinued components). For contin-
ued components, it is necessary to predict their
obsolescence dates. In the literature, obsolescence
prediction methods vary from classical statisti-
cal techniques to artificial intelligence algorithms,
which use historical data, such as component tech-
nical characteristics or market introduction dates,
as indicators of their future obsolescence Jennings
et al. (2016).

In this work, we rely on an internal dataset
from Orange, containing information on server
components. This dataset enables us to estimate
the obsolescence dates for active components.

To assess and predict obsolescence risks, we
begin by creating a comprehensive mapping of
the components and their associated data sources.
The analyzed system consists of AirFrame Rack-
mount servers. Each hardware component, such
as memory (RAM), hard drive, processor (CPU),
network card, and chips, is linked to relevant data
attributes, including:

e The market introduction date of the compo-
nents.

e The component’s status (whether it has been
discontinued or not).

e The obsolescence date for discontinued com-
ponents.

e The target variable y, which represents the
estimated remaining lifetime for each compo-
nent.

This mapping forms the first step for predictive
modeling and dependency analysis, allowing us to
collect and organize relevant data for the subse-
quent steps of the process.
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3.2. Prediction Models

Obsolescence date prediction is based on polyno-
mial regression, a method that captures the non-
linear relationships between component charac-
teristics and their remaining lifetime Ostertagova
(2012). The model uses the data attributes defined
during the mapping phase to estimate the obso-
lescence date of each component. For components
without an obsolescence date, the remaining life-
time is calculated as the difference between the
predicted obsolescence date and the current date.

An example of RAM obsolescence prediction
in 5G servers is shown in Figure 2, illustrating
how the model applies these variables to generate
actionable insights.

3.3. Graph Models and Evaluation
3.3.1. Graph Model Principle

After predicting the remaining lifetime of the
components, we use a graph model to analyze the
dependencies between the different components
of the system and understand the overall impact
of these predictions on the entire system.

In this model, each component is represented
as a node in a graph, and the dependency relation-
ships between hardware components are shown by
orange edges. The node size reflects the number
of dependencies associated with that component:
the larger the node, the more dependencies it has;
the smaller the node, the fewer dependencies other
components have on it. The component’s member-
ship in the system is indicated by a black arrow
pointing to the server. Additionally, each compo-
nent is associated with supplementary informa-
tion: the ”in” represents the number of compo-
nents it depends on, while the “out” indicates the
components it depends upon. This visualization
illustrates not only how the obsolescence state of
one component can affect the entire system but
also how the dependencies between components
influence this propagation.

3.4. Obsolescence Risk Scenarios

To address the impact of hardware component
obsolescence on system functionality, we define
three scenarios:
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Fig. 2. RAM obsolescence prediction in 5G servers

3.4.1. Scenario 1: Optimistic Scenario

In this scenario, the server components are still
available on the market, ensuring uninterrupted
supply. This situation simplifies the planning of
component replacements, providing the organiza-
tion with enough time to order the necessary parts
and manage its inventory efficiently.

One of the main benefits of this scenario is
maintaining a stable infrastructure where compo-
nents remain compatible with existing technolo-
gies, as shown in Figure 3.

3.4.2. Scenario 2: Moderate Scenario

This scenario describes a situation where some
components become obsolete, as shown in Fig-
ure 4, but the system as a whole remains opera-
tional for some time. However, this obsolescence
can lead to a gradual propagation of malfunctions
across the system, as discussed in Schulze et al.
(2021), affecting the performance of still func-
tional components.

Dependencies between components can be
managed as long as only one component becomes
obsolete and there is no significant dependence on
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Optimistic scenario

other components. However, obsolete components
require ongoing maintenance and monitoring to
limit their potential impact on the system’s overall
performance. Proactive measures, such as repair-
ing or replacing these components, are essential.

3.4.3. Scenario 3: Pessimistic Scenario

The final scenario describes a situation where all
components of a system have become obsolete,
leading to the risk of being unsupported by the
product manufacturer if severe disruptions occur.
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There is also the risk that the system may fail to
handle modern tasks. Maintaining the system be-
comes increasingly difficult, and replacing com-
ponents within a reasonable time frame becomes
complex.

This scenario presents a high risk of server un-
availability on the market, as detailed in Figure 5.
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Fig. 5. Pessimistic scenario

3.5. Health Evaluation and Thresholds

To classify the system’s health based on compo-
nent obsolescence, specific thresholds are estab-
lished for each scenario, emphasizing the CPU’s
critical role due to its high interdependence and
impact on overall functionality. These thresholds,
guiding the evaluation function of a component’s
obsolescence, are determined by domain experts.
The scenarios are as follows:

Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Optimistic Scenario

e Healthy: Estimated lifetime > 2 years.
e Warning: 1 < lifetime < 2 years.
e Critical: Estimated lifetime < 1 year.

Moderate Scenario

e Critical: If more than 2 components are ob-
solete.

e Warning: If 2 components are obsolete.

e Warning: If 1 component is obsolete.

Pessimistic Scenario
e Critical: All components are obsolete.

These thresholds guide the health evaluation
of the system and facilitate the identification of
critical risks related to obsolescence. For exam-
ple, Figure 2 illustrates the application of these
thresholds to classify the component’s state in a
clear and actionable manner. In this figure, we are
in Scenario 1, where components are still avail-
able on the market. The green area represents the
“healthy” state, indicating that there are more than
2 years of remaining lifespan for the component
(here, the RAM), which is the ideal time to con-
sider alternatives for the server or component. The
orange area shows the range where the remaining
lifespan is between 1 and 2 years, and the red area
indicates the range where there is less than 1 year
left before the RAM becomes obsolete.

4. Expected outcome
4.1. Optimistic Scenario

In Figure 6, which represents the optimistic sce-
nario where components are still available on the
market, the node representing the CPU is notice-
ably larger. This reflects a strong dependency on
other server elements for this component. In this
scenario, the components are classified as critical
because their estimated remaining lifespan is less
than one year (e.g., the CPU with a remaining
lifespan of 15 days).

4.2. Pessimistic Scenario

In the pessimistic scenario presented in Figure 7,
the components are discontinued, meaning they
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overall Server Health: Critical

Fig. 6. Graph Representation of the Optimistic Scenario

are no longer available on the market. Conse-
quently, their replacement will take longer, result-
ing in a critical” status due to their unavailabil-
ity (e.g., as shown in Figure 7, a CPU that has
been obsolete for 3 years and 80 days). Finding
compatible components for the system or a com-
plete server will take time due to the current mar-
ket shortage. This extended replacement time in-
creases the risk of system downtime, highlighting
the importance of proactive planning and timely
replacement before the components become criti-
cal.

5. Conclusion

This work has focused on developing a predictive
model to manage the obsolescence and availabil-
ity of hardware components in server systems.
The next phase of this research will extend the
methodology to address software obsolescence.
The predictive framework will be adapted to ac-
count for factors such as end-of-support time-
lines, security vulnerabilities, and key elements
like cloud computing, virtualization, and operat-
ing systems. This approach will enable compre-
hensive and integrated management of both hard-
ware and software obsolescence across the entire
system.
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