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In an era where robotic autonomy is becoming increasingly pivotal across various sectors, the symbol grounding
problem remains a significant barrier to achieving reliable, context-aware automation. This paper presents novel
frameworks to enhance robot autonomy by integrating symbol grounding into autonomous systems, specifically
focusing on robot manipulation tasks. We first introduce a method for programming robots using behavior trees,
derived from single demonstrations, which embeds symbolic knowledge into robot operations, enabling adaptability.
Second, we discuss a framework that integrates spatial scene graphs with BTs to improve task execution through an
enhanced understanding of spatial relationships and object interactions, which is crucial for dynamic and cluttered
environments. Lastly, we present a neuro-symbolic approach for failure detection and diagnosis in robotic systems.
This approach leverages the synergy between symbolic reasoning and neural network capabilities to detect and
diagnose operational failures accurately, addressing the critical need for reliability in automated systems. The
preliminary evaluation results demonstrate advancements in the programming, execution, and failure detection of
robot manipulation tasks, paving the way for more adaptive and intelligent robotic systems in complex real-world
applications.
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1. Introduction (Harnad, 1990). The inability to bridge this gap
results in robots that lack adaptability and strug-
gle with generalization across different tasks and
environments (Coradeschi and Saffiotti, 2003).
One of the primary reasons for the persistence
of this problem is that traditional robotic systems
rely on predefined rules and structured environ-
ments (Diehl et al., 2021). These systems are
not well-suited for real-world applications where
variations in object positions, task sequences,
and environmental conditions are common. Ap-

Robots are becoming increasingly important in
various sectors, including manufacturing, health-
care, and home automation. Robots are expected
to perform complex tasks with minimal human
intervention, which requires them to understand
and interact with their environments effectively
(Jain et al., 2022). However, despite advances in
artificial intelligence and machine learning, robots
still struggle to interpret and execute tasks in
dynamic and unstructured environments. A fun-
damental issue underlying this limitation is the
symbol grounding problem, which refers to the
challenge of associating abstract symbolic rep-
resentations with real-world entities and actions

proaches such as programming by demonstrations
(PbD) (Villani et al., 2018) have been proposed
to address this issue, but they often fail to in-
tegrate symbolic reasoning effectively. Further-
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more, while neural networks have shown promise
in learning from data, they are require large
amount of data (Siinderhauf et al., 2018), lack
interpretability and struggle with generalizing be-
yond their training distributions. This has moti-
vated the need for hybrid approaches that combine
symbolic reasoning with data-driven learning to
improve robot autonomy and adaptability (Kroe-
mer et al., 2021; Garcez and Lamb, 2023).

To address these challenges, this paper presents
three frameworks to enhance robot autonomy
through symbol grounding. First, we propose
programming robots with Behavior Trees (BTs)
derived from single demonstrations, embedding
symbolic knowledge for greater adaptability. Sec-
ond, we integrate spatial scene graphs with BTs,
enabling robots to plan and execute tasks with
improved spatial awareness. Finally, we introduce
a neuro-symbolic approach for failure detection,
combining symbolic reasoning with neural net-
works to enhance reliability. These contributions
provide a step forward in addressing the symbol
grounding problem and improving the efficiency,
adaptability, and reliability of robot manipulation
tasks.

The rest of this paper is organized as follows:
Section 2 reviews related work, highlighting exist-
ing approaches and their limitations. Section 3 de-
scribes the proposed frameworks, including their
design and implementation. Section 4 presents a
discussion about the proposed frameworks, con-
clusion, limitations and potential directions for
future research advancing robotic autonomy.

2. Related Work

PbD (also known as learning from demonstra-
tion or imitation learning), in the domain of
robotics, has been extensively explored as an in-
tuitive method for teaching robots complex tasks
by leveraging human demonstrations (Chernova
and Thomaz, 2014). PbD methods typically fo-
cus on two levels of learning: motion-level learn-
ing, which involves trajectory imitation and adap-
tation, and task-level learning, which abstracts
task execution into symbolic representations (Osa
et al., 2018). Motion-level approaches, such as
Dynamic Movement Primitives (DMPs) (Ijspeert
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et al., 2013), enable robots to generalize learned
trajectories but lack semantic understanding of
task constraints and objectives (Kyrarini et al.,
2019; Lentini et al., 2020; Knaust and Koert,
2021). Conversely, task-level learning, which in-
cludes symbolic planning and action segmenta-
tion, enhances flexibility but often requires signifi-
cant manual intervention for labeling and structur-
ing data (Gustavsson et al., 2022; Suddrey et al.,
2022; Eiband et al., 2023; Kroemer et al., 2015).
In our work, we aim to integrate both motion and
task-level learning to improve robot adaptability
and generalization (Jain et al., 2024).

BTs have gained prominence as a structured
and modular representation for encoding task exe-
cution policies in robotic systems (Colledanchise
and Ogren, 2018). Originally developed in the
gaming industry, BTs offer a hierarchical and
reactive control structure that enables task de-
composition and execution monitoring (Colledan-
chise et al., 2019). Unlike traditional Finite State
Machines (FSMs) (Grollman and Jenkins, 2010),
Hidden Markov Models (HMM) (Kroemer et al.,
2015) and Hierarchical Task Networks (HTNs)
(Nejati et al., 2006), BTs provide enhanced mod-
ularity, reusability, and adaptability to dynamic
environments. Several studies have focused on
learning BTs from demonstrations, but many
require multiple training examples (Gustavsson
et al., 2022) or rely on predefined structures
(French et al., 2019), limiting their scalability and
deployment in real-world applications.

A significant challenge in robot task execu-
tion is enabling generalization across different
task environments. Scene graphs (Aksoy et al.,
2011) have been explored as a means to in-
corporate spatial and semantic relationships into
robotic decision-making (Kroemer et al., 2021).
These structured representations capture object af-
fordances and task dependencies, facilitating im-
proved task transfer and execution in varied set-
tings (Ni et al., 2023). However, most existing
approaches rely on manually constructed scene
graphs or require extensive training data (Zanchet-
tin, 2023; Aksoy et al., 2011), limiting their feasi-
bility in settings with high task variability. In our
work, we are investigating the integration of scene
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graphs with BTs to enhance symbolic reasoning
and enable more adaptable robotic task execution.

Failure detection and recovery is another crit-
ical research area in autonomous robotics (Kha-
lastchi and Kalech, 2018). Traditional approaches
rely on manually defined failure conditions (Ak-
erkar and Sajja, 2009) or static threshold-based
anomaly detection methods (Hundman et al.,
2018), which often fail in highly dynamic en-
vironments. Data-driven failure detection tech-
niques, such as Variational Autoencoders (VAEs)
and Long Short-Term Memory (LSTM) networks,
have demonstrated the ability to model normal
execution patterns and detect deviations indicative
of failures (Park et al., 2018). However, purely
data-driven methods lack interpretability, making
it difficult for the model to detect contextual fail-
ures (Mitrevski et al., 2023) and the users to diag-
nose and rectify failures effectively. In our work,
we have introduced neuro-symbolic methods that
integrate symbolic reasoning with deep learning
techniques to improve failure detection accuracy
and provide failure diagnostics.

The proposed research builds upon these exist-
ing efforts by integrating PbD, BTs, spatial scene
graphs, and neuro-symbolic learning into a cohe-
sive framework for robot programming and exe-
cution monitoring. By leveraging a single demon-
stration to generate adaptable BTs, incorporating
spatial reasoning for improved task execution,
and employing neuro-symbolic learning for fail-
ure detection, this approach seeks to enhance the
autonomy, adaptability, and reliability of robotic
systems in real-world applications.

3. Proposed Framework

To address the limitations in current robotic au-
tonomy, This work introduces three frameworks
that integrate symbol grounding into robotic sys-
tems: (1) CoBT, which uses PbD to generate adap-
tive BTs from a single demonstration; (2) CoBT
2.0, which extends CoBT by incorporating spa-
tial scene graphs for improved object relationship
understanding and task execution; and (3) NsAI
FDD, which combines symbolic reasoning with
neural networks for enhanced failure detection
and diagnosis. This section outlines their method-
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Fig. 1. Workflow of offline learning and execution in

CoBT. The red lines depict the offline learning phase
and the black lines depict the execution phase.

ologies and preliminary evaluation.

3.1. CoBT Framework

Industrial robots typically require expert-driven
coding, making conventional programming rigid,
time-consuming, and unsuitable for dynamic en-
vironments. Small and medium-sized enterprises
struggle with frequent reprogramming, hinder-
ing scalability. A major challenge in flexible au-
tomation is enabling robots to execute complex
tasks with minimal human input. Programming by
Demonstration (PbD) offers a solution by teaching
tasks through demonstration rather than coding.
However, many PbD methods demand multiple
demonstrations or extensive manual intervention,
limiting their real-world applicability.

Collaborative Programming of Behavior Trees
(CoBT) (Jain et al., 2024) framework addresses
these challenges by providing a structured, data-
efficient framework that generates reactive and
modular BTs from a single demonstration. Un-
like traditional methods that require manual task
decomposition or extensive training data, CoBT
leverages a combination of data-driven learning
and logic-based declarative reasoning to segment
demonstrations into meaningful task sequences.
The generated BTs enable robots to execute tasks
flexibly, adapting to variations in object place-
ment, environmental changes, and new goal con-
figurations without requiring additional demon-
strations. This approach ensures that robots can
generalize learned behaviors while maintaining
transparency and explainability, which are critical
for industrial deployment.
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The CoBT framework consists of several key
components, as shown in Fig. 1 that collectively
transform a single human demonstration into an
adaptive robotic program. First, a user provides a
demonstration, which is recorded as multivariate
time-series data capturing the robot’s end-effector
movement, object positions, and gripper states.
This data is then processed through a velocity-
based change-point detection algorithm to seg-
ment the demonstration into discrete actions, as
shown in Fig. 2 Top. Each segment is analyzed
to extract symbolic states, which represent task
constraints and motion preconditions. By map-
ping these symbolic states to Dynamic Movement
Primitives (DMPs), CoBT ensures that the robot
can adapt its motions to varying conditions with-
out losing the overall task structure. Once the
primitive actions are learned, they are composed
into a BT, which enables the robot to execute the
task reactively. The generated BT continuously
evaluates task preconditions and dynamically se-
lects actions based on real-time sensory feedback,
ensuring that the robot can recover from errors and
adapt to changes in the environment.

One of the advantages of CoBT is its ability to
generate task plans that are both modular and hi-
erarchical. The learned BTs can be adapted to new
goals by modifying high-level task parameters
without requiring a new demonstration. Addition-
ally, multiple BTs can be combined to form com-
posite task sequences, enabling robots to execute
long-horizon tasks with minimal reprogramming.
This modularity allows CoBT to scale across a
wide range of robotic applications, from industrial
assembly to household assistance. Furthermore,
because BTs provide a transparent representation
of task execution, they enhance user understand-
ing and facilitate human-robot collaboration.

The effectiveness of CoBT has been validated
through experimental evaluations on seven differ-
ent robotic manipulation tasks, as shown in Fig. 3,
including pick-and-place, insertion, drawer open-
ing, pouring, and kitting. The results demonstrate
that CoBT achieves a high success rate of ap-
proximately 93%, with an average programming
time of just 7.5 seconds per task. Importantly,
the framework exhibits strong reactivity, success-
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Fig. 2. (Top) Segmentation based on velocity and
gripper state. (Middle) Transitions during the drawer
task demonstration. (Bottom) a trial example of the
generated policy under normal conditions.

Fig. 3. 7 evaluation tasks that include mix of com-
plex and P2P trajectory executions, and short and long-
horizon tasks with multi-level goals.

fully adapting to variations in object placement
and environmental conditions in real time. A pi-
lot study conducted with non-expert users further
highlights the accessibility and usability of CoBT,
showing that individuals with no prior robotics
experience can program robots effectively using
this approach. Participants in the study reported
low cognitive load and high ease of use, indicat-
ing that CoBT significantly reduces the complex-
ity of robot programming. Video of the demon-
strations and evaluation tasks are available at:
https://youtu.be/uz768FNIAgM

3.2. CoBT2.0 Framework

CoBT has certain limitations. It struggles with
handling spatial and semantic relationships be-
yond two objects, limiting its adaptability to new
environments and varying object arrangements.
The absence of structured spatial reasoning re-
duces flexibility and reactivity to changes in object
positions. Additionally, without semantic knowl-
edge, the generated programs can be ambiguous,
leaving operators uncertain about how the system
perceives entities, actions, and relationships. In-
tegrating spatial scene graphs and semantic task
knowledge enhances CoBT’s ability to capture
and reason about these relationships effectively.
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To this end, CoBT2.0 is proposed to integrate
spatial scene graphs and semantic task knowledge
within the BTs. In particular, a single demon-
stration is used to generate action specific spa-
tial scene graphs containing geometric constraints
specifications of the action. The geometric con-
straints are used as action specific conditional
nodes for the BTs where the dynamic scene graph
is constantly analyzed. Further, the spatial knowl-
edge and visual data from the demonstration is
used to disambiguate the BT and generate seman-
tic labels about the relationships of the entities
interacting in the task. This approach enhances
framework’s ability to generalize, adapt during
task execution, transfer learned behaviors to new
environments, and improve system transparency
and interpretability for operators.

CoBT2.0 generates dynamic scene graphs for
each action in a demonstrated task. Nodes rep-
resent entities such as objects or the robot, and
edges denote spatial relationships like proximity
or movement. Using transformation matrices em-
bedded in the edges, the algorithm captures de-
tailed spatial relationships between entities. The
graph is iteratively updated as actions progress,
ensuring that the evolving spatial configurations
are accurately represented. This structured repre-
sentation allows the robot to generalize and adapt
tasks based on real-world object configurations.

Further, the framework refines the spatial scene
graphs by assigning semantic labels to enti-
ties, actions, and relationships. Using a Vision-
Language Model (VLM), it generates descriptive
labels based on the spatial data and pre-/post-
condition images for each action. These labels
provide clear insights into the robot’s interactions,
such as “Gripper grasps metal rod” or “Block near
drill.” The enriched scene graphs improve inter-
pretability and transparency, enabling the operator
to understand and validate the system’s perception
and reasoning effectively.

The BT generated by CoBT 2.0 executes tasks
by integrating spatial scene graphs as conditional
nodes, ensuring precise adherence to demon-
strated spatial configurations. During execution,
the BT sequences actions represented as motion
primitives while continuously evaluating the cur-

rent spatial relationships between entities against
the stored scene graph constraints. Each action-
specific node checks whether the real-time trans-
formations of objects match the expected trans-
formations stored in the graph. If the spatial con-
straints are satisfied, the BT allows the execution
to proceed; otherwise, it triggers corrective actions
or retries to align with the demonstrated con-
ditions. This combination of scene graph-based
conditional nodes and motion primitives enables
adaptive, accurate, and robust task execution in
dynamic environments.

3.3. NsAI FDD Framework

Autonomous robots face inevitable execution fail-
ures due to environmental changes, sensor inac-
curacies, or mechanical issues. Traditional failure
detection relies on predefined conditions set by
experts, but this approach is unscalable for diverse
failure modes. As industries embrace mass cus-
tomization and agile manufacturing, robots must
autonomously detect and handle failures. The key
challenge is developing an adaptive system that
learns from normal executions while ensuring in-
terpretability and explainability.

A neuro-symbolic approach for failure de-
tection integrates symbolic reasoning with sub-
symbolic data-driven learning to address this chal-
lenge. The neuro-symbolic framework presented
in this work combines raw sensory data from robot
execution with symbolic task representations en-
coded in Behavior Trees (BTs). This hybrid ap-
proach leverages the strengths of both paradigms:
neural networks effectively model complex, high-
dimensional execution data, while BTs provide
contextual information to the model. By combin-
ing these two elements, the system can detect
failures by identifying deviations from normal ex-
ecution patterns.

The proposed approach, as shown in Fig. 4 con-
sists of two primary components: offline learning
and online failure detection. In the offline learning
phase, a LSTM-VAE is trained on nominal exe-
cution data. This model learns a compact latent
representation of normal execution behavior using
both sub-symbolic sensory inputs (e.g., robot joint
states, forces, and object positions) and symbolic
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Fig. 4. Overview of the proposed neuro-symbolic Al
failure detection and diagnosis.

task states extracted from the BT. The model re-
constructs expected execution patterns, allowing
it to identify discrepancies when encountering
anomalous execution data. A failure score func-
tion is learned based on reconstruction errors, and
a custom threshold function is defined to distin-
guish between normal and anomalous executions.

During the online failure detection phase, real-
time execution data is processed through the
trained LSTM-VAE model. The failure score is
continuously monitored, and if it deviates beyond
the learned threshold, the system triggers a fail-
ure event, stopping execution and alerting human
operators. The BT structure provides a high-level
understanding of execution status, allowing oper-
ators to trace failures back to specific sub-tasks,
aiding in rapid diagnosis and recovery. This capa-
bility is particularly useful in industrial settings,
where minimizing downtime is critical.

The neuro-symbolic failure detection approach
was validated through a pick-and-place robotic
task. The model was trained on 40 successful
trials and refined with a threshold function from
20 additional trials. It was then tested under nor-
mal and failure conditions, including vision er-
rors causing incorrect placements and unexpected
tool collisions, as shown in Fig. 5. Results con-
firm the system’s ability to detect failures in real
time, with the failure score function distinguishing
normal executions from anomalies. The thresh-
old dynamically adapted to execution conditions,
enabling timely execution halts and meaningful
feedback via BT visualization. Compared to tra-
ditional methods relying on predefined thresholds
or rule-based classifiers, the neuro-symbolic ap-
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proach demonstrated superior adaptability, elimi-
nating the need for domain-specific failure predi-
cates.

4. Discussion and Conclusion

This paper presents a framework that embeds
symbolic representations into robotic task exe-
cution through three frameworks: CoBT, CoBT
2.0, and NsAI FDD. Each framework leverages
symbol grounding to bridge the gap between high-
level task abstraction and real-world execution,
enhancing flexibility in dynamic and unstructured
environments.

CoBT leverages PbD to learn BTs from a sin-
gle demonstration. The grounding of abstract task
descriptions into structured BTs allows the robot
to react dynamically to environmental changes,
without the need for extensive manual program-
ming. By decomposing a demonstration into sym-
bolic task representations and associating them
with executable actions, CoBT ensures that sym-
bols retain meaning in varying contexts, making
task adaptation more fluid and interpretable.

CoBT 2.0 enhances the CoBT framework by
integrating spatial scene graphs, which provide a
structured representation of object relationships
and task constraints. Symbol grounding in this
case is achieved through the dynamic encoding of
spatial relationships within a scene, allowing the
robot to reason about its surroundings. By contin-
uously updating the scene graph during execution,
the robot can ensure that symbolic representations
remain contextually relevant, improving its ability
to generalize across different task settings. This
results in a higher level of spatial awareness, re-
ducing errors in interactions and enabling more
robust manipulation in cluttered environments.

NsAI FDD applies symbol grounding to fail-
ure detection and diagnosis by combining sym-
bolic task states with data-driven failure detection.
NsAI FDD grounds symbolic task states into the
robot’s execution model, allowing failures to be
detected based on deviations from expected sym-
bolic behavior rather than solely numerical fail-
ures. This approach improves detection capability
and enables the system to provide meaningful di-
agnostics, making failure recovery more intuitive
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and effective.

The integration of symbol grounding across
these three frameworks ensures that abstract
knowledge is continuously mapped to real-world
execution. This results frameworks that are not
only adaptable but also intuitive, allowing human
operators to better understand and trust robotic
decision-making. By embedding symbolic reason-
ing at different stages of task execution—from ini-
tial programming to real-time monitoring and fail-
ure detection—this work demonstrates how sym-
bol grounding can significantly enhance robotic
autonomy. The preliminary experimental results
validate the effectiveness of this approach, demon-
strating significant improvements in task general-
ization, responsiveness to environmental changes,
and failure detection accuracy.

State-of-the-art approaches to robot autonomy
often rely on large datasets, brittle rule-based
scripts, or domain-specific heuristics, which limit
adaptability to changing environments and leave
crucial gaps in transparency and real-time failure
management. Many learning-based methods also
neglect higher-level spatial and semantic relations,
hampering a robot’s ability to generalize from
small or single demonstration sets. In contrast,
this symbol-grounded autonomy framework inte-
grates data-driven learning with declarative, sym-
bolic reasoning to address these limitations more
comprehensively. Thus, building on the shortcom-
ings in existing approaches, this work provides a
cohesive and more resilient solution for flexible,
interpretable, and fail-safe robot autonomy in real-

NsAI FDD results under normal conditions (left), vision error (middle), and tool collision (right).

world scenarios.

While effective, CoBT relies on single demon-
strations, limiting its ability to capture task vari-
ability. Future work will focus on incremental
learning and integrating multiple demonstrations
to enhance generalization. CoBT 2.0 is still un-
der development, and future work will involve
extensive validation across diverse tasks. Efforts
will focus on optimizing data sampling rates
and execution accuracy while exploring modular
task design for greater flexibility and scalability.
NsAI FDD excels at detecting failures but lacks
a human-understandable explanation mechanism.
Future research will integrate Large Language
Models to generate natural language explanations
for detected failures, aiding operator decision-
making. Additionally, NsAI FDD will be evalu-
ated against the new Regulation (EU) 2023/1230
on machinery safety, ensuring compliance with
evolving autonomy and safety requirements while
enhancing human-robot interaction through inter-
pretable diagnostics.
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