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The article examines the testing method described in Annex B of the ISO 14120 standard for assessing the impact 
resistance of machine guards. The typical testing practice involves firing a single shot from a ballistic cannon at the 
guard, with sensors measuring the projectile's velocity before and after impact. However, meeting the guidelines for 
this test presents challenges, including the difficulty of identifying and hitting the "weakest point" of the guard and 
ensuring the projectile strikes the surface in a perpendicular manner. The key findings, derived from a five-year 
collaboration between two research institutions, focus on analyzing uncertainties inherent in these standardized 
testing methods. Two statistical distributions, Logistic and Gaussian, are employed to process the data. The 
traditional approach of creating a histogram before calculating the cumulative distribution function (CDF) was found 
inadequate because it reduces the number of data points available for accurate curve fitting. To improve this process, 
the Probit method, already used in the AEP 2920-2016 standard, is introduced as a more effective regression 
technique for the Gaussian distribution. A comparison is made between results from different regressions, focusing 
on discrepancies in the tails of the curves, where the divergence between models becomes more significant. 
The article also discusses methods for estimating the statistical dispersion of test results. Specific examples of trials 
carried out at the INAIL laboratories in Monte Porzio Catone are provided, showing the application of these methods 
in practice. These experiments were part of a joint research initiative between the University of Perugia and the 
Department of Technological Innovations and Safety of Plants, Products, and Anthropic Settlements (DIT). By 
presenting this research, the article seeks to address the practical limitations of standardized tests and suggests 
alternative methods to improve accuracy and reliability of machine guard impact resistance evaluations. 
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1. Introduction 
The EU Machinery Directive (MD) 2006/42/EC 
(2006) is the primary reference for machine 

design. It specifies the principles that must be 
followed by manufacturers to meet the safety 
requirements for the design and construction of 
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machinery. According to the MD, every possible 
risk must be eliminated or reduced through 
appropriate machine design. However, 
particularly in the mechanical field, most machine 
operations inherently involve hazards. When a 
hazard cannot be adequately reduced during the 
design phase, the best alternative is to implement 
protective equipment between the hazard source 
and the operator. For example, guards should be 
used to prevent contact with moving machine 
parts. Similarly, safeguards are commonly 
employed to protect individuals from potential 
impacts caused by objects that might be ejected 
from the machine, such as tools, workpieces, or 
parts of them. To comply with the directive, 
international standards such as ISO 14120 (ISO, 
2015a) recommend the state-of-the-art procedure 
to ensure an adequate level of protection. In this 
procedure, the guard, or a section of it, is 
subjected to a high-velocity impact from a 
standardized projectile, and the resulting damage 
is assessed to determine the outcome. As outlined 
in the type B standard and further detailed in type 
C standards, such as ISO 23125 (ISO, 2015b), the 
test is considered successful if the damage is 
limited to elastic or plastic deformation without a 
fracture penetrating the entire thickness of the 
guard. This state of deformation, without a 
through-thickness crack (a continuous crack from 
one surface to the other), is referred to as the 
Impact Resistance (IR) of the material. However, 
if the deformation results in a continuous crack 
extending through both sides of the guard, the test 
is deemed a failure (see ISO 14120, Annex B, 
paragraph 2.4.1). In this study, a through-
thickness crack will be classified as a failure (state 
1), while a successful outcome will be indicated 
as state 0. This approach, which may differ from 
those used in other studies, such as the approach 
for protection of persons, will be explained in 
more detail later. 

2. Probabilistic Exploration of Resistance of a 
Material, Vbl vs IR 

Building on the understanding of impact resistance, 
one of the most efficient probabilistic analyses for 
studying high-velocity impacts was presented by 
Tahenti et al. (2017a). It is important to note that 
probabilistic methods are primarily used for 
determining the probability of full perforation of an 
armor, denoted as Vbl (50% of probability), which 

is different from the impact condition studied in this 
paper (called IR that will be explained in detail 
later).  The well-known Recht & Ipson equation 
(Recht et al., 1963) is also able to predict residual 
energy of a projectile perforating a ductile material 
for any impact velocity higher than Vbl. Other testing 
techniques were implemented to find the full 
penetration state of a material; this refers to the 
condition in which a projectile perforates the 
material completely, with no residual velocity 
remaining after penetration. This state is not utilized 
in safety application for machine directive because 
it is considered an unsafe condition for the worker. 

In this paper, the thorough-thickness crack 
condition, as explained in the introduction, is 
explored, highlighting how this phenomenon proves 
to be a trickier state to retrieve under a specified 
impact condition (Uhlmann et al., 2017). 

However, some of the methods used for Vbl 
determination can be adapted to investigate IR50, 
which is the 50% probability of obtaining a through-
thickness crack. It represents the kinetic energy a 
guard can withstand from a projectile impact. 

Generally, all strategies try to minimize the 
difference between predicted frequencies of fails 
and experimental data.  Some authors have 
introduced Monte Carlo simulation methods (Davis 
et al., 2021) or Bootstraps Method to obtain the 
experimental distribution of the perforation 
probability, thereby reducing the need for costly 
experiments (Tahenti et al., 2017b). 

Another effective technique for studying 
ballistic penetration is simulation using finite 
element analysis (FEA). This approach is a valid 
tool for investigating the interactions between 
projectiles and targets under high strain rates. 
Several studies have employed advanced FEA 
techniques to model the penetration of projectiles 
into various materials. For instance, in the work of 
Stecconi and Landi (2023), the authors used explicit 
dynamic analysis to simulate the impact of steel 
projectiles on polycarbonate plates, focusing on the 
plastic deformation and fracture mechanisms of the 
target material for safety guards. To replicate the 
penetration process and predict the perforation 
threshold accurately, the model must incorporate 
well-defined material properties and finely tuned 
erosion criteria.  

Many similar studies demonstrate that a well-
defined model, in terms of materials, damage 
models, and element erosion techniques, can 
effectively reproduce the results obtained in 
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experimental tests of machinery guards, ensuring 
accurate predictions of impact resistance and failure 
in protective structures. 

In addition to these studies, Uhlmann et al. 
(2022) introduced an alternative way for 
determining impact resistance (IR) through a 
statistical evaluation procedure. This approach 
facilitates a probabilistic characterization of IR using 
the cumulative distribution function (CDF) of a 
normal distribution. Rather than defining a fixed 
interval, this method expresses IR as the probability 
P of succeeding in the impact test. Uhlmann 
effectively employed this statistical technique across 
multiple series of impact tests conducted on 
polycarbonate (PC) sheets. However, due to a lack 
of evidence supporting the validity of the Gaussian 
hypothesis, another distribution was proposed for 
data regression. In 2023, the research groups led by 
Landi and Uhlmann jointly presented a different 
statistical approach (Uhlmann et al., 2023) that 
compared normal and logistic distributions. The 
CDF of the normal distribution was calculated using 
a histogram that classified 104 experimental tests 
into seven classes, revealing a good correlation 
between the curves. However, when the same 
procedure was applied to a smaller sample of tests 
using a four-class histogram, as presented by Landi 
et al. (2024), notable differences between the graphs 
emerged. Also, the previous work investigates the 
withstanding capacity in the VGZ interval described 
by Landi et al. (2022a). 

Going back to Vbl, the ballistic penetration 
phenomenon is widely studied in military 
applications to ensure personal protection against 
threats. In this field, a large variety of materials can 
be used in protection construction; also, several 
ranges of projectile energies are possible due to the 
vast array of weapons and initial velocities. In this 
more diverse and complex scenario, Kneubuehl et 
al. (2003) presented an overview of the principles 
and test methods that can be used. Some guidelines 
emerge from the NATO STANAG which realizes 
standards such as the procedures for the evaluation 
and classification of personal armor AEP 2920 
(2016). In the annex H.3 it introduces the procedure 
to statistically evaluate the probability of 
penetration, V50, of a protection, using the Probit 
method (Finney, 1952). The use of the likelihood 
function permits the determination of 95% 
confidence intervals for Vbl. Another body armor 
standard, from the U.S. department of justice NIJ 
0101 (2008), describes rigorous testing of panels and 

specify to perform a regression to estimate the 
performances over a range of velocities. It ensures 
that different distribution and regression methods 
are possible suggesting however the logistic 
regression as adequate for the purpose. Annex D.2 
of NIJ shows the function and the optimization 
method to estimate the parameters that define the S-
shaped curve. 

In this work, the authors apply Probit and Logit 
methods to perform data regression on experimental 
tests conducted on polycarbonate panels, comparing 
the results of the two regressions. 

3. Testing Setup and Material Specification 
3.1. Gas cannon setup 
Due to space constraints, the experimental setup 
used at the INAIL laboratories in Monte Porzio 
will not be discussed here. A standardized 0.1 Kg 
projectile is employed for the tests. For details, 
see Landi et al. (2024).  

3.2. Material 
In the conducted tests, 4 mm thick PC panels 
measuring 300x300 mm were employed. The 
characteristics of the material are detailed in 
Table 1. 

Table 1. Mechanical and physical characteristics 
of polycarbonate. 

Characteristic (unit) Value 
Thickness (mm) 4 
Tensile Strength (N/mm2) 60 
Elongation at tear (%) 110 
Specific heat (J/g K) 1.3 
Density (g/cm3) 1.2 
Modulus of elasticity (MPa) 2200 

4. Description of the Test 
The following paragraphs present and discuss the 
tests conducted to investigate the statistical behavior 
of IR. For each test, the impact velocity, residual 
velocity (where available), lost energy, and the result 
are indicated. In this context, 'failure' is defined as 
the formation of a through-thickness crack. 

Figure 1 illustrates both sides of the guard that 
experienced failure, clearly showing a through-
thickness crack. In borderline cases, water may be 
used to determine whether the crack extends 
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continuously through the entire thickness of the 
material. 
 

Fig. 1. Tested material. (a) Bulging and (b) Through-
thickness crack. 

The protective efficacy of a safeguard is 
commonly quantified by IR. In studies by Landi 
and Uhlmann, both Gaussian and Logistic 
distributions were found to be suitable for 
analyzing datasets where the continuous variable 
"Energy" serves as the input and the binary 
outcome (success or failure) as the output. Landi 
et al. (2024) performed a preprocessing step on 
the impact test results by converting the binary 
data into quantitative values. This was achieved 
by categorizing the results into energy ranges and 
calculating the probability of failure for each 
range. However, the article highlights that the 
limited number of tests constrained the creation of 
sufficient energy ranges, leading to a sparse 
dataset for curve fitting. Given the infeasibility of 
increasing the number of tests, an alternative 
regression method for constructing the 
cumulative distribution function (CDF) was 
considered. 

4.1. Probit method 
In statistics, a probit model is a type of regression 
where the dependent variable can take only two 
values. The purpose of the model is to estimate 

the probability that an observation with particular 
characteristics will fall into a specific one of the 
categories, see Eq. (1); moreover, classifying 
observations based on their predicted 
probabilities is a type of binary classification 
model. The perforation phenomenon is a 
stochastic event characterized by dispersion. This 
dispersion can be approached by a probability 
distribution which gives a perforation probability 
as a function of the impact energy. The theorem 
of the central tendency and experimental results 
have confirmed the choice of the normal law 
according to which the two parameters (μ and sd) 
are estimated by means of the PROBIT method. 
The presented approach is used in a similar 
purpose to study military protections of soldiers, 
and it is well presented in the standard AEP 2920. 

P(ui=1| xi )= (Yi ) (1) 

Where: 

� xi : impact energy in the i-th test; 
� ui : result of the i-th test (1 for perforation, 0 

otherwise); 
�  : cumulative distribution function (CDF) 

of the standard normal distribution; 
� Y : probit value. 

Typically, the probit function is modelled as a 
two-parameter linear function. In this case, we use 
a single regressor, as shown in Eq. (2): 

Yi=β0+β1xi (2) 

In linear regression, the sum of squared deviations 
is used as a measure of goodness-of-fit, with the 
best fit achieved when this function is minimized. 
However, with a cumulative function, error losses 
are not evenly distributed, which requires a different 
approach. Therefore, the goodness-of-fit for the 
Probit method uses the log-likelihood loss function, 
see Eq. (3): 

(3) 

Note that Pui=0 , Eq. (3), is the complementary 
probability to Pui=1. The parameters [β0, β1] are 
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estimated by maximizing the log-likelihood 
function. The best fit is found by setting the partial 
derivatives of the log-likelihood function to zero, as 
shown in Eq. (4):  

∂LL
∂β0

= 0 

∂LL
∂β1

= 0
(4) 

Since LL function is nonlinear in β0 and β1, 
determining their optimum values will require 
numerical methods. It can be shown that this log-
likelihood function is globally concave, and 
therefore standard numerical algorithms for 
optimization will converge rapidly to the unique 
maximum. The maximization procedure can be 
accomplished by solving the above two 
equations; the algorithm that is used take the 
name of maximum likelihood estimation (MLE). 
The relationship between the optimal parameters, 
the mean and the standard deviation of the Gaussian 
is exhibit below in Eq. (5): 

μ = -
β0
β1

sd =
1
β1

(5) 

The impact test data are used as supporting points 
to fit a Gaussian distribution. The fitting process 
was conducted using MATLAB R2018a (The 
MathWorks, Inc., 2018) via the 'glmfit' command 
for the data presented in Table 2. The resulting fit 
is shown in Figure 2, and the corresponding 
results are presented in Table 3. 

4.2. Logit method 
An alternative representation of the probability of 
observing failure in an impact test is provided by the 
logistic distribution (Montgomery and Runger, 
2014). The logistic function is a monotonically 
increasing, S-shaped curve, and the optimal fit is 
achieved by maximizing the log-likelihood 
estimator, which allows for determining the best-fit 
parameter values (Hosmer and Lemeshow, 2000). 
Similar to the Probit method, the Logit method is 
employed to statistically describe the impact 
phenomenon. 

The NIJ 0101 standard illustrates the 
application of the logistic distribution in 
characterizing the resistance of body armor 
subjected to impact. The procedure outlined in this 
standard mirrors that used in the Probit method; 
however, in the case of the Logit method, the 
sigmoid function  is utilized, as shown in Eq. (6): 

=
1

1+e-t (6) 

where t is defined as a linear function of the 
parameters, given by Eq. (7): 

t =β0+β1xi (7) 

Figure 2 illustrates the comparison between the 
two regression methods in relation to the 
experimental points and the failure percentages 
for each point. It is important to note that the 
extremes of the graph do not correspond to the 
length of the VGZ interval; in fact, the domains 
of the functions have been enlarged to ensure 
visibility of the curves’ tails. The two regression 
methods appear to be largely interchangeable, 
yielding similar values primarily around the IR50 
threshold, although some minor differences are 
observed at the tails of the regressions. Summary 
data for the regressions are presented below. 

Fig. 2. Comparison of the Probit and Logit 
regressions. 

Table 2. Test data (0 bulging, 1 through crack). 

Test 
number 

Energy [J] 
(Test result) 

Test 
number 

Energy [J] 
(Test result) 

1 143.53 (0) 9 239.88 (0) 
2 213.30 (0) 10 248.17 (0) 
3 224.53 (0) 11 248.32 (0) 
4 225.57 (0) 12 249.88 (0) 
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Table 2 (Continued) 
5 231.34 (1) 13 262.04 (1) 
6 234.79 (1) 14 267.67 (1) 
7 238.01 (0) 15 315.24 (1) 
8 239.81 (0) 16 345.14 (1) 

Table 3. Best fit regression data. 

Fitting 
Parameter 

Probit 
Regression 

Logit 
Regression 

Mean 253.8 [J] 254.1 [J] 
Std 24.0 [J] 14.1 [J] 
LL -6.943 -6.941 

 

Note that if a failure were indicated as 0, the 
curves in Figure 2 would be the mirror image with 
respect to the vertical axis passing through IR50. 

 

Fig. 3. Absolute difference between the Probit and 
Logit curves. 

Figure 3 illustrates the observed differences 
between the regression methods. The largest 
discrepancies are found around the tails, with a 
maximum difference of approximately 1.3%. 
Overall, both methods effectively describe the 
withstanding capacity within the VGZ interval of 
the safeguard, showing only minimal differences. 

5. Validation Method 
Validation of the proposed regression models is 
essential to minimize potential errors and ensure 
reliable predictions. Since both regressions are 
nonlinear, the coefficient of determination (R²) is 
not a suitable metric for assessing the model’s 
goodness of fit (GOF). For small datasets, 
McFadden’s pseudo-R² (McFadden, 1977) is a 
more appropriate measure. As highlighted by 
Uhlmann et al. (2024), pseudo-R² values in the 
range of 0.2 < R² < 0.4 generally indicate a good 
model fit for nonlinear regressions such as logistic 

models. In this study, the obtained pseudo-R² value 
of R² = 0.34 suggests that the model fits the data 
well. However, while the pseudo-R² provides a 
statistical measure of the model’s alignment with 
experimental data, it does not guarantee the 
accuracy of predictions, particularly at the tails of 
the distribution, as emphasized by Uhlmann et al. 
(2024). Indeed, the validation approach proposed 
by Uhlmann encountered discrepancies when 
evaluating the lower energy side of the curve 
during the validation phase. To better characterize 
the regression tail, a novel validation method was 
developed assessing the physical plausibility of 
predictions in the low-probability failure range, 
specifically within 0.01< p <0.1. This approach is 
particularly relevant for safety applications and 
accurate determination of failure thresholds is 
critical. 
In the first phase, an initial set of two impact tests 
is conducted at a projectile energy level 
corresponding to a predefined failure probability p. 
The binomial distribution is employed to calculate 
the likelihood of observing a through crack (0, 1, 
or 2 failures) from these trials. Table 4 summarizes 
these probabilities for p = 0.0266. 

Table 4. Probability of observing 0 to 2 failures for 
n=2 tests at the same energy level, with p=0.0266, 
based on the binomial distribution. 

Number of 
failures 

Value 

P (0) 94.93% 
P (1) 5.00% 
P (2) 0.07% 

According to this validation framework, a null 
hypothesis (H0) is defined, asserting that the 
regression model is valid, while the alternative 
hypothesis (H1) postulates the model's invalidity 
determine that the whole tests shall be repeated to 
validate the regression’s tails. 

For instance, if 5% threshold for H0 is agreed, the 
decision-making process for the first phase is as 
follows: 

� Case 1: no failures (P(0)) are observed. H0 is 
accepted, and the model is deemed valid. 

� Case 2: a single failure (P(1)) is observed. 
This outcome neither strongly supports H0 
nor H1 and requires further investigation. 
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� Case 3: two failures (P(2)) occur. H0 is 
rejected, and H1 is accepted, indicating that 
the regression model is invalid. 

To resolve the ambiguity in Case 2, a second test 
phase is initiated, consisting of two additional 
impact tests. At this stage, the occurrence of one 
prior failure makes P(0) infeasible. Table 5 provides 
the updated probabilities of observing 1, 2, or more 
failures across all four tests, while the decision rules 
for the second phase, using the same 5% probability 
criteria, is as follows: 

� Case 4:  no more than one failure is observed 
in the four tests. H0 is accepted, and the 
model is deemed valid. 

� Case 5: observing two or more failures across 
four tests would strongly suggest model 
invalidity, leading to the rejection of H0. 

Table 5. Probability of observing 0 to 4 failures for 
n=4 tests at the same energy level, with p=0.0266, 
based on the binomial distribution. 

Number of 
failures 

Value 

P (0) 90.12% 
P (1) 9.50% 
P (2) 0.38% 
P (3) 0.0066% 
P (4) <0.0001% 

 

This two-phase method is specifically designed to 
balance statistical rigor and safety considerations. 
The first phase focuses on minimizing the risk of a 
Type I error (incorrect rejection of H0), while the 
second phase addresses the risk of a Type II error 
(failure to reject H0 when it is invalid). By 
extending the validation to four tests in the second 
phase, the method increases its statistical power, 
thereby enhancing the reliability of conclusions 
regarding the regression model’s validity. 
Additionally, this iterative approach improves the 
robustness of the decision-making process by 
incorporating further experimental data. 

 6. Validation Tests 
The binomial validation method described earlier 
was applied to the polycarbonate (PC) panels under 
investigation, using the Gaussian regression model 
as the reference framework. This approach aimed to 

evaluate the model's ability to predict the tails of IR 
probability distribution.  The threshold value for the 
Gaussian regression results to a value of p = 0.0266. 
The corresponding energy value is 190 J (  = 61.7 
m/s). Because of the uncertainties of the tests the 
error on the evaluation of impact velocity is around 
±2 m/s. In order to assure an impact velocity greater 
than , the validation tests are performed with a 
velocity of about . 
Two shots were executed with measured impact 
velocities of 66.2 m/s and 66.3 m/s. Both tests 
concluded successfully, with no through-crack 
formation observed in the panels. 

According to the validation procedure, these 
results suggest that the Gaussian regression model 
provides an accurate description of the IR behavior 
of the PC panels within the tested probability range. 
To further investigate the robustness and reliability 
of the novel validation method, the same validation 
tests were repeated under identical conditions 
(impact velocity 65.7 - 66.5 m/s). Consistently, no 
through-cracks were observed in the repeated tests, 
reinforcing the initial findings and offering 
additional confidence in the Gaussian regression 
model as a predictor of panel safety performance. 

7. Conclusion 
In this paper, the authors present a procedure for 
statistically evaluating the probability of failure of 
machine guards by analyzing the statistical 
distribution within the VGZ interval, based on the 
ballistic limit. Two methods already used for 
testing defense armor and general military 
equipment have been adapted for this purpose. 
According to the log-likelihood estimator, both 
models demonstrate good fitting performance and 
yield comparable results. However, small 
differences between the two curves become more 
apparent towards the tails of the distributions. 

As future standards are expected to establish 
reliable maximum impact energy thresholds for 
specific safeguards, achieving low failure rates (with 
1%-10% being reasonable targets) will be essential. 
Therefore, the validation method proposed in this 
paper offers a reliable approach for verifying the 
acceptance of the implemented models. This method 
ensures, with a certain probability, that the desired 
energy resistance threshold is equal to or lower than 
the values predicted by the Probit or Logit models. 

Finally, to determine which distribution better 
reflects actual behavior, a larger number of tests 
should be conducted. Nonetheless, the authors 
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believe that this combined approach, using Probit or 
Logit regression alongside test validation, will 
contribute to the creation of a safer workplace for 
operators by enhancing protective measures. 
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