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This paper introduces an interval-based non-probabilistic sensitivity analysis method, named subinterval sensitivity.
A powerful, reliable and rigorous sensitivity analysis method, which is best suited to quantify the importance of
inputs purely with respect to their mathematical model. The method has only recently and partially appeared in the
literature, while its scalability to high-dimensional models is claimed here for the first time. We apply subinterval
sensitivity to quantify and rank the importance of the parameters of a trained neural network model while drawing
comparisons with the established Sobol’ sensitivity analysis method. Sensitivities on the parameters of a trained
neural network can shed light on overparametrization and explainability of the neural network surrogate model.
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1. Introduction

In recent years, sensitivity analysis has primarily
been studied in a probabilistic sense to super-
sede the more local perturbation-based methods
(Saltelli, 2002). Sensitivity analysis is the study
of the determination of contributions by the un-
certainty of each input variable to the uncertainty
of the output within a function or model (Helton
et al., 2006). The sensitivities help define the rela-
tive importance of each input variable with respect
to their given mathematical model. Determining
the importance of variables becomes increasingly
important when dealing with higher numbers of
variables, as when more variables are introduced
into a model, the increase of dimensionality means
that the number of possible combinations in-
creases exponentially, commonly referred to as the
“curse of dimensionality”. Knowing which vari-
ables to keep or ignore can drastically decrease the
number of value combinations in further analysis,
e.g. through fixing unimportant variables to pre-
determined values.

This paper introduces the use of subinterval
sensitivity analysis as a way to break the curse
of dimensionality without sacrificing rigour, effi-
ciency and scalability. The parameters of a trained

neural network model for functional approxima-
tion are chosen as the inputs of the sensitivity
study, because of the large and easy-to-increase
number of inputs. The sensitivities are computed
against the neural network output.

Interval analysis methods are often avoided
by analysts because of the so called black-box
models which impede propagation of intervals as
opposed to floating-point numbers (Gray et al.,
2023). Interval computations are also avoided in
non-black-box models as their conservatism can
lead to output intervals that are wider than ought
be, e.g. because of repeated variables in the com-
putation graph (Rump, 2010).

There is no reason however, for not using in-
terval computation when the mathematical model
is known, even more so when there are no re-
peated variables. It can be shown with subinterval
relations that trained fully-connected multilayer
perceptron neural networks implement expres-
sions with no repeated variables, thus are naturally
suited to be evaluated with interval arithmetic.
Because these models typically contain a large
number of parameters, they represent an excel-
lent application for benchmarking interval-based
methods on high-dimensional models.

298



299Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

1.1. Related Work

The literature on probabilistic sensitivity analysis
methods is vast and it includes variance-, entropy-
, density- and derivative-based methods. Interval-
based sensitivity analysis, on the other hand, is
still niche and relatively recent. Perhaps the most
popular interval-based sensitivity analysis method
is pinching due to its simplicity. Pinching oper-
ates by reducing the uncertainty of a variable to
determine its impact on the total uncertainty of a
function output by fixing an uncertain variable to
the values where it is most sensitive (Ferson and
Tucker, 2006). In Ferson’s paper the sensitivity is
introduced in general terms with

1− unc(T )
unc(B)

,

where B is the base value of the risk quantity, T
is the risk value computed with an input pinched,
and unc() is a measure of the uncertainty of the
output. Even though pinching can be understood
as a very general method somewhat independent
of the uncertainty model, it ties well with interval
uncertainty for its simplicity. Whilst Ferson and
Tucker (2006) formalized pinching to work with
p-boxes, Alvarez (2009) extended the work to
more general uncertainty objects like Dempster-
Shafer structures using non-specificity measures.
Subinterval sensitivity utilizes the formalization
introduced by Ferson and Tucker (2006), with the
difference that unc() is now an xy-graph area, vol-
ume or hyper-volume and T is a sub-intervalised
input as opposed to a pinched one. In this sense,
subinterval sensitivity can be understood as a gen-
eralization of pinching, in fact pinching can be
retrieved “for free” from subinterval sensitivity.

The concept of subinterval sensitivity is not
new and it has surfaced the literature in differ-
ent forms, even though it has never been intro-
duced in a manner that the authors deem satis-
factory, not least in a reproducibility sense. For
example, Miralles-Dolz et al. (2022) were the
first who compared subinterval sensitivity against
Sobol’ while highlighting the advantage of the
former being distribution free. Nevertheless, the
paper places no emphasis on the scalability of
the method to high dimensional models, which

has motivated this paper. Other appearances of
the method in its non-intrusive optimization- or
sampling-based flavor have been sighted in Chang
et al. (2022) who used it for black-box engineering
models.

2. Subinterval Sensitivity Analysis

2.1. Interval Computation

An interval is a compact set of R denoted
[x] = [x, x] = {x ∈ R : x ≤ x ≤ x} ∈ IR, where
x is the left and x is the right endpoint. IR denotes
the space of intervals (Neumaier, 1990). Interval
arithmetic operations must be defined between
two intervals [x, x] and [y, y], for example for
(+,−, ∗, /) these are

[x, x] + [y, y] = [x+ y, x+ y],

[x, x]− [y, y] = [x− y, x− y],

[x, x] · [y, y] = [minA,maxA],

A = {xy, xy, xy, xy},
[x, x]/[y, y] = [x, x] · 1/[y, y]
= [x, x] · [1/y, 1/y] if 0 /∈ [y, y].

While these operations are guaranteed to enclose
the true answer in the respective intervals, their
use in expressions with repeated variables yields
inflated intervals due to the dependence problem.

A real-valued function f : Rn → R
m whose

expression f is evaluated with interval operations
satisfies the fundamental theorem of interval anal-
ysis, which ensures the rigor of interval compu-
tation. Such an interval extension f : IR

n →
IR

m is said to be inclusion monotonic f([x]) ⊆
f([y]), whenever [x] ⊆ [y].

2.2. Subinterval Reconstitution

In one dimension, this technique partitions an
interval into N subintervals typically of equal
size. The interval extension is evaluated on each
subinterval separately, and finally the output is
reconciled by taking the hull of all the subinter-
val outputs (reconstitution). Subinterval reconsti-
tution can be very effective to reduce the inflation
of interval computation whenever there are only
a few repeated variables to partition. Subinterval
sensitivity, on the other hand, utilizes subinterval
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reconstitution in only one or two dimensions, re-
gardless of the dimensionality of the model, which
makes it well suited for high-dimensional models.

2.3. Subinterval Sensitivity Indices

Let f : R
d → R be the model, x = x1, ..., xd

be a bounded vector of inputs, [x, x] some fixed
bounds of interest such that x ∈ [x, x], and f an
interval extension of f such that [y, y] = f([x, x]).
After partitioning the i-th input into N tiling
subintervals such that [xi, xi] = ∪N

n [xi, xi]n and
evaluating the interval extension on each of them
[y, y]i,n = f([xi, xi]n), the subinterval sensitivity
index for the i-th input is

Si = 1−
∑N

n (xi − xi)n
(
y − y

)
i,n(

y − y
)
(xi − xi)

. (1)

The numerator in (1) is the sum of all subinterval

Fig. 1. Visual representation of Eq.(1) using an exam-
ple where [y] = f([−3, 3], [−2, 2]), N = 20, and the
highlighted subinterval is n = 11 where [xi=1]n=11 =
[0, 0.3] and [y]i=1,n=11 = [−2.0135, 2]. The sensitiv-
ities for this example are S1 = 0.827 and S2 = 0.123.

areas (see overall area of sub boxes in Fig. 1)
and the denominator is the area of the xiy graph
enclosing box (see background box in Fig. 1).
The sensitivity index Si, ranges from 0 to 1 ∀i ∈
{1, ..., d}. When Si = 0, the partitioning has no

effect, the numerator is equal to the denominator
and so y has no functional dependence on xi.
When Si = 1, the subinterval areas are zero and
so y has full functional dependence on xi. It is
worth repeating that these sensitivity indices are
immune to the curse of dimensionality because the
partitioning takes place in one dimension.

3. Experiments

3.1. The High-Dimensional Model

Multilayer perceptron neural networks are often
used as a surrogate model or functional approx-
imant of engineering models. In this study, the
forward sweep of a trained network is considered
as the high-dimensional model whilst the inputs
of the sensitivity analysis are the networks pa-
rameters. Let f : R × R

d → R be the forward
sweep that is a function of the network input t

and parameters x, and let f be the its interval
extension. A two-layer neural network is trained
to approximate the cubic function y = t3 − 3t2 +

2t + 5 with five Rectified Linear Units (ReLU),
see Fig. 2. Sensitivity indices are computed for
each parameter in the trained neural network, also
known as weights and biases W (1) ∈ R

1×5,
b(1) ∈ R

5, W (2) ∈ R
5×1, b(2) ∈ R. The input

parameters for the sensitivity study x =

W
(1)
11 ,W

(1)
21 , ..., b

(1)
1 , b

(1)
2 , ...,W

(2)
11 ,W

(2)
12 , ..., b(2),

are all arranged in a one single vector. The trained
network settled on the following values W (1) =

((−1,−1, 0, 1, 1)), b(1) = (−1, 0, 0,−2,−3),
W (2) = ((−13,−5, 0, 5, 13))T , and b(2) = 5.

3.2. Repeated Parameters in Multilayer
Neural Networks

Even though neural networks are regarded as
complex and interconnected functional models,
we found that once trained their forward sweep
mathematical expression contains no repeated pa-
rameters. The absence of repeated parameters and
inputs can be visually appreciated in the computa-
tion graph in Fig. 3. One can also appreciate that
the absence of repeated parameters scales up with
the number of layers.
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Fig. 2. Visual representation of the neural network
used within this paper.
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Fig. 3. Computation graph of the neural network’s
forward sweep being used as a model.

3.3. Subinterval Sensitivity Analysis

Subinterval sensitivity is calculated utilizing an
input partition of N = 50 subintervals. The sen-
sitivity is investigated within a sufficiently large
box to appreciate wide deviation from the optimal
values after training. This is achieved adding un-
certainty to the optimal values as follows [x, x] =

x̂ + [−1, 1], equivalent to a radius of ±1 for each
parameter. The forward sweep is evaluated across
31 equally spaced t values [−2,−1.8, · · · , 3.8, 4].
The inputs are organized in the single vector
x = (W (1), b(1),W (2), b(2)) of size d = 16. Fig.
4 shows that parameters b

(1)
2 , W

(1)
5 , and W

(1)
1

are the most important when looking at the max
sensitivity of all parameters. This is mostly ex-
pected for W

(1)
5 and W

(1)
1 as these parameters

have the greatest influence on the units which have
to mimic the cubic growth of the function; the
W (1) layer is also the first in the computation
graph, so this layer has an indirect impact on all
other layers, increasing its importance. Table 1
reinforces this information as the t values where
max sensitivity for W

(1)
1 and W

(1)
5 is achieved

are at their respective ends [−2, 4] of the function
range where the highest cubic growth occurs. The
high max. sensitivity of b

(1)
2 occurs right as all

W (1) parameters and units 1, 4, and 5 have no
effect at t = 0, removing many typically impactful
parameters; as W

(2)
2 has a much bigger absolute

coefficient than W
(2)
3 , it makes sense that b(1)2 is a

major contributor to the model output uncertainty.

3.4. Black-box Subinterval Sensitivity

It may be argued that black-box models are in-
compatible with interval computation. This is true
e.g. if the model’s source code is unavailable, lost,
obfuscated, locked, encrypted etc. (Gray et al.,
2023). Black-box subinterval sensitivity is not a
new concept, it has appeared in the literature
a couple of times already (Chang et al., 2022;
Miralles-Dolz et al., 2022). The idea is that to keep
the same theoretical foundations of the method
whilst replacing interval computation with non-
intrusive interval propagation. While this idea is
legitimate, care must be taken with non-intrusive
propagation, especially for non linear and high di-
mensional models. Non-intrusive interval propa-
gation is implemented using coverage samples for
each subinterval aiming to obtain an inner approx-
imation of the endpoints. These results are shown
alongside the subinterval sensitivity analysis re-
sults in Fig. 4. Black-box subintervals display in-
flated indices compared to subinterval sensitivity,
particularly where the parameters are supposed
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to have zero impact. Furthermore, for parameters
with low impact on the model (such as the W (2)

layer), the black-box version is unable to correctly
identify the t values of highest importance, dis-
playing a seemingly chaotic pattern. However, for
the important parameters, black-box indices seem
satisfactory albeit with more fluctuations. It is
interesting to note in Fig. 4 that black-box indices
seem always greater than the actual indices.

3.5. Sobol’ Total Effect Indices

Subinterval sensitivity indices are compared
against Sobol’ total effect indices computed with
the Python Sensitivity Analysis Library (SALib)
(Herman and Usher, 2017). It seems acceptable to
posit that subinterval sensitivity captures interac-
tion effects when a variable is being partitioned
while all other variables are left at their full un-
certainty. So, the total effects index is a more ap-
plicable measure of sensitivity for comparison as
it includes the interaction effects. Therefore total
indices are chosen over the first-order indices in
this study. The analysis is again carried out across
31 equally spaced t values [−2,−1.8, · · · , 3.8, 4],
enabling direct comparison with subinterval sensi-
tivity. N = 213 = 8192 samples are used for each
parameter in the neural network, with the sensi-
tivity values from Sobol’ indices having a statisti-
cal interval of ±0.001 at this number of samples
through multiple iterations, showing that results
from Sobol’ indices are reproducible and reliable
for comparisons while also striking a balance with
the computation time required. The results in Fig.
5 suggest that the W (2) layer is very insensitive
to changes in its value compared to other layers,
most likely because the relative uncertainty in that
layer, except for unit 3, is far lower compared to
the other layers as most other parameters have
coefficients in the range [−1, 1] whereas the W (2)

layer has coefficients (−13,−5, 5, 13) which are
far less sensitive when the uncertainty is the same
for all parameters.

3.6. Introducing a ’Noisy’ Unit into the
Neural Network

An additional test using the neural network is
the addition of a ’noisy’ unit, f6(t) = 20 ·

ReLU(t − 9) where W
(1)
(6,1) = (1), b(1)(6) = (−9),

W
(2)
(1,6) = (20), designed to have no effect on

the model output within the domain t ∈ [−2, 4].
The adjusted network now has shape: W (1) ∈
R

1×6, b(1) ∈ R
6, W (2) ∈ R

6×1, b(2) ∈
R, and values: W (1) = ((−1,−1, 0, 1, 1, 1)),
b(1) = (−1, 0, 0,−2,−3,−9), W (2) =

((−13,−5, 0, 5, 13, 20)), and b(2) = 5. The in-
tuition is that this unit will have a sensitivity of
zero across all values of t and all other units
have the same sensitivities as before, showing that
subinterval sensitivity can identify non-important
parameters to fix their values. Sobol’ indices are
calculated as a control test as they can find un-
necessary variables when their total effects index
STi = 0 (Saltelli et al. (2008)). Table 1 shows
the noisy unit has absolutely no impact on the
network, as max senstivity is zero across all three
parameters. Also as predicted, the maximum sen-
sitivity stays the same for all other parameters, as
seen in Fig. 4 and 5.

4. Discussion

Subinterval sensitivity analysis and Sobol’ indices
show general agreement in determining the most
important parameters of a function, as shown in
Fig. 4 and 5. However, looking at the importance
of each parameter at a given t like t = −2 in
Fig. 6 shows that some parameters slightly change
ranking across both methods, such as W (1)

2 being
more important than b

(1)
1 for subinterval sensi-

tivity and vice versa for Sobol’. Another differ-
ence between the methods noticeable in Fig. 6
is the substantially different allocation of sensi-
tivity index values for the most and least non-
zero important parameters. For t = −2, the most
important parameter W

(1)
1 has twice the relative

importance in Sobol’ total indices when compared
to subinterval sensitivity analysis; the opposite
happens with parameters ranked 4th to 10th. How-
ever, both methods seem to agree on the relative
importance magnitude of somewhat important pa-
rameters, such as W (1)

2 and b
(1)
1 at t = −2, which

suggests that these extreme changes in sensitivity
indices between both methods have a point where
they switch in over- or underestimating the impor-
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Fig. 4. Subinterval sensitivity indices (continuous line) across t ∈ [−2, 4] for x = (W (1), b(1),W (2), b(2))
plotted against black-box subinterval indices (discontinuous lines) using M = 200, 400, 800 samples per
subinterval.

Fig. 5. Sobol’ total effect sensitivity indices 213 = 8192, across t ∈ [−2, 4] for x = (W (1), b(1),W (2), b(2)).

tance of a parameter; this however, is observed
to change depending on the relative importance
of parameters within a specific value and as such
cannot be generalized. These differences show the

usefulness of comparing multiple methods, since
Sobol’ indices better highlight which parameter
seems to be most important (factor prioritization),
while subinterval sensitivity analysis more clearly
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Table 1. Max sensitivity values for Sobol and Subintervals when noisy unit is added into the net-
work. As noisy unit has no impact on output, this table also describes the max sensitivity values for
Sobol and Subinterval method when no noisy unit is present as the results are identical in both tests.

maxt Subinterval Sensitivity
Si(t) Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6
W (1) 0.35 t=−2.0 0.28 t=0.6 0.11 t=1.0 0.25 t=1.0 0.44 t=4.0 0.0 ∀t
b(1) 0.33 t=−0.4 0.54 t=0 0.17 t=0.4 0.25 t=1.0 0.27 t=1.6 0.0 ∀t
W (2) 0.04 t=−2.0 0.10 t=0 0.19 t=0.4 0.05 t=1.0 0.04 t=4.0 0.0 ∀t
b(2) 0.20 t=0

maxt Sobol’ Indices
Si(t) Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6
W (1) 0.68 t=−2.0 0.38 t=0.6 0.03 t=1.0 0.48 t=1.4 0.79 t=4.0 0.0 ∀t
b(1) 0.46 t=−0.8 0.87 t=0 0.038 t=0.8 0.41 t=1.2 0.31 t=1.8 0.0 ∀t
W (2) 0.00 t=−2.0 0.02 t=−0.2 0.08 t=0.8 0.01 t=1.4 0.00 t=4.0 0.0 ∀t
b(2) 0.30 t=0.8

shows which parameters hold no importance in
the sensitivity of a model or function (factor fix-
ing). A comparison of the execution time for both
methods found that subinterval sensitivity analysis
(∼ 300 sec per run) is twice as fast compared
to Sobol’ indices (∼ 600 sec per run). As such,
subinterval sensitivity may be a preferable method
for high-dimensional models due to its faster anal-
ysis with comparable accuracy in results.

5. Conclusion

This paper has introduced subinterval sensitivity,
a non-probabilistic, interval-based and rigorous
sensitivity analysis method, with application to
the parameters of a trained fully-connected neural
network model. Aside from formally introduc-
ing and naming the method, the aim is to show
that subinterval sensitivity can be scaled to high-
dimensional models while obtaining results that
are comparable to Sobol’ total-effect indices, a
renowned sensitivity gold standard. Subinterval
sensitivity has demonstrated prominent numeri-
cal correctness on the high-dimensional example,
surpassing Sobol’ total effects in efficiency and
certainty. The efficiency is easily explained by the
number of model evaluations required by the two
methods. On the 16-dimensional model, Sobol’
total indices require at least 8192 evaluations,
while subinterval sensitivity only just about 50 ×
16 = 800 evaluations in interval arithmetic. The
certainty of the method stems from the mathemat-

ical rigour of interval computations, which makes
the method reliable against spiky nonlinearities
and safe against numerical instability.

The black-box version of subinterval sensitiv-
ity, popular among engineers, has also been inves-
tigated. Such a version replaces interval compu-
tation, arguably unavailable in black boxes, with
coverage samples for endpoints inner approxi-
mation. Our study on the 16-dimensional model
shows that such black-box method fails to cor-
rectly identify the unimportant parameters. More
precisely, the parameters that have no effect what-
soever on the model appear to have significant
sensitivities (false positives). This behaviour is
to be attributed to the non-intrusive propagation
of intervals via sampling, which is unsuitable in
high-dimensional models. We would discourage
the use of black-box subinterval sensitivity in
models with input dimension higher than five.

The introduction of a ‘noisy’ unit within the
neural network model, that is known to have no
effect on the output has enabled subinterval sensi-
tivity to be tested further against false positives.
Sobol’ total indices are already known to work
well on these examples to confirm the lack of
importance of the noisy parameters. Subinterval
sensitivity has worked as expected proving that
the ‘noisy’ unit has no effect on the model output.

Subinterval sensitivity is still largely unex-
plored and further research is needed to truly un-
derstand its mathematical implications in multi-
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Fig. 6. Ranking of sensitivity indices at t = −2 for Sobol’ Total Indices and Subinterval sensitivity analysis.

variate functional analysis.
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