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As one of the key components of the train bogie, accurate bearing remaining useful life (RUL) prediction and timely 
maintenance play a vital role in the safe and reliable operation of the train. The environment of rail transit trains is 
complex, and the vibration signal of train bearings shows the characteristics of non-linearity and non-smoothness. 
Meanwhile, the safety requirements of rail transportation system are comparatively demanding, and the time series 
RUL prediction of bearings should consider the long-term and multi-data problems. For the complex degradation 
process of rail transit train bearings, a hybrid bidirectional long and short-term memory (BiLSTM) networks and 
Kolmogorov-Arnold Networks (KAN) RUL prediction method is proposed. Based on the BiLSTM network, KAN 
is used to replace the fully connected layer, which improves the parameter utilization and enhances the ability to 
obtain the nonlinear pattern information in the hidden state of BiLSTM. Compared with the traditional time-series 
prediction method, the method has better prediction accuracy, stronger interpretability, and is more suitable for the 
prediction of train bogie bearing RUL in high safety requirement scenarios. 
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1. Introduction 
China's rail network has developed rapidly in 
recent years. China's high-speed rail network has 
exceeded 45,000 kilometres. The reliability and 
safety of railway trains have received great 
attention from all walks of life. At present, regular 
preventive maintenance is a common 
maintenance method in train operation 
management, but there are some problems (Dai et 
al., 2023). Over-maintenance increases costs, and 
under-maintenance can lead to equipment failure, 
downtime or even endanger personal safety. 
Therefore, Prognostics and Health Management 
(PHM) is widely used and RUL is an important 
basis for assessing the health condition (Wang et 
al., 2021). There is no doubt that the performance 
of bogie bearings is directly related to these 
priority objectives. Ensuring that bogie bearings 
are in good condition to avoid unplanned 
downtime or catastrophic failure is critical and 
can significantly reduce costs and improve 
operator profitability by extending bearing RUL. 
Predictive or condition-based maintenance 

strategies are widely used to monitor bearing 
health in real time, extend actual bearing RUL, 
prevent catastrophic failures and save operating 
costs. On-board condition monitoring and bogie 
bearing health diagnosis or prediction are 
essential in train operations. 

The physical model-based method is 
predicated on the measurement of the object in 
order to establish an accurate mechanism model. 
This is then compared with the actual output of 
the degradation mechanism model. Mathematical 
methods are then employed to analyse and 
process the residuals, thus achieving the desired 
level of degradation (Luo et al., 2008). The 
degradation of train bogie bearings is affected by 
a dynamic and complex operating environment, 
making it difficult to develop highly accurate 
predictive models. The artificial neural network 
approach, a data-driven method, builds a 
historical degradation model using equipment 
data and monitors real-time degradation levels 
through this model. It is easy to implement, 
requires no prior knowledge or physical models, 
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and relies solely on processing and analyzing 
operating data. [4]. The use of recurrent neural 
networks (RNN) in analysing time series data has 
proven to be a valuable tool for extracting 
temporal and dynamic features from sequences, 
leading to its widespread application in RUL. 
(Guo et al., 2017) proposed a method that 
combined six correlation-similarity features and 
eight classical time-frequency features, selecting 
the most sensitive features using monotonicity 
and correlation indexes, and constructing the 
RNN-HI through the use of a RNN. However, the 
degradation of train bogie bearings is a long-term 
process due to the high safety guarantee, and 
long-term data need to be processed in the actual 
process. The LSTM variant of the RNN is a 
suitable solution to this long-term dependency 
problem. (Liu et al., 2021) analysed multi-stage 
bearing degradation through a statistical process, 
which helps LSTM to make predictions, but the 
generalisation ability is weak. (Cheng et al., 2021) 
proposed a new method for rolling bearing RUL 
prediction based on convolutional neural network 
(CNN) and BiLSTM models, which was trained 
by constructing nonlinear degradation indices (DI) 
to achieve an accurate prediction of future 
degradation indicators and RUL of rolling 
bearings. In train bogie bearing RUL prediction, 
data-driven methods provide high accuracy and 
flexibility but face significant drawbacks. They 
heavily depend on the quality and quantity of 
training data, leading to performance degradation 
with incomplete or noisy data. Additionally, their 
complexity demands substantial computational 
resources, resulting in high time and economic 
costs.In light of the aforementioned limitations, a 
novel approach for RUL prediction of train bogie 
bearings is proposed by combining the BiLSTM 
algorithm with the KAN (Liu et al., 2024). The 
LSTM algorithm has been demonstrated to excel 
at capturing long-term dependencies in sequential 
data.The KAN component has been shown to be 
used to efficiently map complex nonlinear 
offsets.Experiments by (Liu et al., 2024) have 
demonstrated that KAN is more efficient than 
multilayer perceptron (MLP) in terms of 
parameter utilisation, and can achieve better 
fitting with fewer nodes and less training time. 
The integration of these two approaches has been 
shown to enhance the extraction of features and 
the recognition of time-series information, 
leading to a substantial enhancement in the 

accuracy of predicting the RUL of train bogie 
bearings.The primary contributions of this paper 
are outlined as follows: 

(i) The process of monitoring the 
degradation of train bogie bearings is 
accomplished through the utilisation of a 
BiLSTM network in conjunction with a 
KAN. The KAN is employed to extract 
key trends from the sequence for fitting. 

(ii) Multiple degradation features were 
constructed to establish a framework for 
train bogie bearing RUL prediction 
based on BiLSTM-KAN. 

(iii) A comprehensive and detailed validation 
of the BiLSTM-KAN method was 
carried out, mainly on the XJTU-SY 
dataset, to confirm the efficiency of the 
method, and a comparative evaluation of 
multiple methods using R2, RMSE, and 
MAE. The validity of the model was 
further validated. 

The rest of the paper is organised as follows: 
section II describes the proposed BiLSTM-KAN 
prediction framework. The LSTM theory and 
KAN theory are also explained. In section III, the 
effectiveness of the prediction framework is 
verified by an experimental study on the XJTU-
SY dataset. It includes model evaluation indexes, 
prediction results, multi-model comparison, and 
result analysis. Finally, in section IV, conclusions 
are given and possibilities for future research are 
discussed. 

2. Model Construction 
2.1.Feature extraction 
To improve bearing RUL prediction, it is essential 
to extract enhanced characteristic indicators from 
monitoring signals that accurately reflect train 
bearing degradation. From bearing vibration 
acceleration signals, time-domain and frequency-
domain features can be extracted. Time-domain 
analysis describes the temporal variation of 
vibration signals, with features like crest factor and 
skewness providing valuable degradation time 
information for long-term dependency prediction. 
Frequency-domain analysis detects anomalous 
shocks and describes bearing conditions, using 
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parameters such as kurtosis, entropy value, and 
energy ratio to identify variations in the frequency 
spectrum.  

2.2.Network structure 
2.2.1.Long short-term memory network 
LSTM is a form of RNN that can effectively 
capture long term relationships in time series data. 
LSTM network is based on RNN and introduces 
three threshold structures in the cell named as input 
gate, forget gate and output gate to selectively 
discard, determine, update and output information 
(Yan et al., 2022). 

Discarding cell state information is the initial 
action of LSTM. The forget gate receives the 
hidden state from the previous time step and the 
input from the current time step. It then outputs a 
value between 0 and 1 using the Sigmoid activation 
function. A value close to 1 means that more 
information will be retained and a value close to 0 
means that more information will be forgotten, as 
shown in Eq.(1):  

  (1) 

In this case, the output of the forget gate is 
denoted by . The input of the current time step is 

. The weight matrix and bias vector to be learnt 
are  and , respectively. the hidden state of the 
previous LSTM unit is . 

The input gate determines what new 
information is added to the cell state. It is also 
activated using the Sigmoid function and combined 
with the new candidate memory cell state as shown 
in Eq.(2): 

  (2) 

The output of the input gate is denoted by . 
The weight matrix and bias vector to be learnt are 

 and  respectively. 

The tanh function is then used to construct a 
new vector  and add it to the unit state. 

  (3) 

The weight matrix and bias vector to be learnt 
are  and . 

Updating the state of a memory cell requires 
a combination of forget and input gates. The cell 
state  is updated by the following Eq.(4): 

  (4) 

Ultimately, the output  and the current 
hidden state  are regulated by the output gate: 

  (5) 
   (6) 

For time series problems, the accuracy of 
prediction is not only related to the information in 
the previous moment, but also to the information 
after the current moment. LSTM is a unidirectional 
transmission in which only the information in the 
previous moment is taken into account in the state 
transmission process. Bi-LSTM is a bidirectional 
transmission, which includes both a forward layer 
and a backward layer, and links the states of the 
forward layer and the states of the backward layer 
to the same output layer, so that the output can take 
into account both past and future state information, 
thus improving the prediction accuracy. 

At each time step , the hidden states and 
 of the forward LSTM and the reverse LSTM are 

spliced together to form the final bidirectional 
hidden state, and the output of the network can be 
represented as follows: 

   (7) 

The structure of BiLSTM is shown in Fig.1. 

 
Fig. 1. The structure of BiLSTM 
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2.2.2.Kolmogorov-Arnold networks 
Kolmogorov-Arnold Networks (KAN) are a novel 
neural architecture inspired by the Kolmogorov-
Arnold Representation Theorem. Unlike MLPs 
(Tolstikhin et al., 2021) that apply fixed node 
activations after summation, KAN places learnable 
activation functions (e.g., spline-based) on edges 
between nodes, implementing a "nonlinearity-first, 
summation-later" paradigm. This design enables 
KANs to achieve greater flexibility and parameter 
efficiency while dynamically adapting activation 
patterns during training. By jointly optimizing 
connection weights and edge-specific mappings, 
KANs excel at extracting complex nonlinear 
features, particularly in applications like bearing 
vibration signal analysis where intricate data 
patterns demand adaptive function learning. 

The Kolmogorov-Arnold representation 
theorem, which is the basis of KAN theory, states 
that any continuous function can be written as a 
combination of a set of unitary functions. 

For any continuous function , there exists a 
set of unitary functions  and  satisfying 
Eq.(8) 

 

     (8) 

The unitary functions ϕp and ψ are 
represented and learnt by b-splines. A Spline 
Function is a smoothing function for 
approximating or interpolating data, which consists 
of segmented polynomials spliced together and 
these polynomials have a certain degree of 
continuity at the junction.B-Splines, on the other 
hand, represent a spline using a set of basis 
functions, each of which is non-zero in only a few 
subintervals. This method can be used to improve 
local accuracy by adjusting the density of control 
points. 

In MLPs, once a layer (consisting of linear 
transformations and nonlinearities) is defined, 
more layers can be stacked to make the network 
deeper. A KAN layer with input and output 
dimensions can be defined as a one-dimensional 
function matrix: 

 
    (9) 

where the function  has trainable 
parameters. 

The shape of a KAN is represented by an 
array of integers , where  is the 
number of nodes in the  layer of the 
computational graph. We denote the  neuron in 
the  layer by , and the activation value of 
the  neuron by . Between layer  and layer 

, there are  activation functions: the 
activation function that connects  and 

 is denoted by Eq.(10) 

     (10) 

The preactivation of  is simply  , the 
postactivation of   is denoted by  

, and the activation value of the 
 neuron is simply the sum of all incoming 

postactivations 

 

     (11) 

In matrix form, this can be written as 

  (12) 

   (13) 

Where  is the function matrix 
corresponding to the  layer (B-spline function 
matrix) and  is the input matrix. 

A general KAN network is composed of  
layers: given an input vector , the output 
of the KAN is 

 
     (14) 

The simplest KAN can then be written 
as: , as shown in Fig 2. 
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Fig. 2. The structure of KAN 

In this way, each KAN connection is 
equivalent to a ‘mini-network’, enabling greater 

expressive power. 

2.3.Explainability train bearing RUL prediciton 
Combining the advantages of BiLSTM in 
processing time series tasks with the expressive 
ability and parameter utilisation efficiency of KAN, 
the BiLSTM-KAN integrated neural network 
model is proposed, as shown in Fig. 3. 

 
Fig. 3. BiLSTM-KAN 

The present study proposes the utilisation of 
KAN as a replacement for the fully connected layer 
through which BiLSTM originally passes. The 
KAN network employs B-Splines as the activation 
function, facilitating the learning of the correct 
univariate function. Through visualisation, KAN 
can be interpreted, thereby enabling the 
observation of the thinking process and the internal 
operation mechanism of the model. It can reveal 
the composition structure and variable dependency 
of the synthetic data set through symbolic formulas, 
successfully fit symbolic expressions close to the 
data generating formulas, and directly show the 
mathematical relationship between input variables 
and outputs, realizing interpretability based on 
symbolic formulas, which is difficult to achieve 
with traditional neural networks. The field of rail 
transportation, as a representative of high safety, 
has high requirements for the interpretability of the 
methods used, which can ensure the transparency 
and fairness of the work process and help to divide 
responsibility after an accident. The use of KAN 
network as the decision-making output of the 
model can effectively improve the interpretability 

of the model, and the visualization process of KAN 
can better help researchers to analyze the decision-
making process and validate it to ensure the safe 
operation of trains. 

3. Experiment Analysis 
3.1.Bearing vibration signal data 
Due to the high safety of rail transit system 
operation, it is difficult to collect the whole life 
cycle vibration signal data of train bearings at the 
actual engineering site. In this paper, the publicly 
available XJTU-SY bearing dataset is used for 
experiments (Wang et al., 2018). Testbed of 
rolling element bearings, shown in Fig. 4, consists 
of an AC motor, motor speed controller, hydraulic 
loading system and test bearings, etc. It can carry 
out accelerated life tests of various types of 
rolling bearings or plain bearings under different 
working conditions, and obtain the full-life cycle 
monitoring data of the test bearings. The test is 
designed for three types of working conditions, 1) 
load 12 kN, speed 2100 rpm; 2) load 11 kN, speed 
2250 rpm; 3) load 10 kN, speed 2400 rpm. 25,600 
points are generated by sampling once per minute. 
Each sample was taken for 1.28 s, yielding 32,768 
data points. 

The rotational speeds under the three 
working conditions are comparable to those under 
the high-speed operating condition of rail transit 
trains, which can simulate the full life cycle state 
of bearings under the high load operating 
condition of trains. And in the actual process, 
there is consistency in the deterioration trend 
failure characteristics of the bearings, so the 
experimental results using this data set are 
representative. 

 
Fig. 4. Testbed of rolling element bearings 

3.2.Data processing 
For degraded faulty bearings, 13 time and 
frequency domain features are extracted from the 
life cycle data as shown in Section 2.1. 
Subsequently, z-score normalisation is used as the 
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normalised model (), which is divided into 
training, validation and test sets after processing 
through a sliding window. The actual bearing 
RUL is considered as a linear degradation and is 

used as a label for the training and test sets. The 
initial health index of the bearing is defined as 1, 
and the health index when running to failure is 
defined as 0. 

 
Fig. 5. RUL prediction results of Bearing 1_3 by several models 

 

3.3. Results of RUL prediction 
The predicted results for bearings 1_3 are shown 
in Figure 5. 

From the prediction curves, LSTM and GRU 
(Ravanelli et al., 2018) were able to basically fit the 
actual curves.CNN-LSTM fitted poorly at the 
beginning and achieved better results after 
accumulating long time data. Transformer (Liu et 
al., 2021) performed poorly on the actual curves, 
with high predicted lifetimes at the initial stage and 
low predicted lifetimes at the later stage, which 
made the bearings fail early and failed to be fully 
functional. Transformer-BiLSTM was able to 
achieve a better fit to the actual curve, however, it 
did not converge at the final time period, which did 
not meet the practical requirements.The predicted 
curve of the BiLSTM-KAN model almost 
completely overlapped with the curve of the actual 
RUL value and converged before the end of the life, 
which was somewhat safe. This indicates that the 
model is highly accurate in capturing the trend of 
RUL changes and is more in line with the actual 
RUL. 

In order to further verify the feasibility and 
generalisation ability of BiLSTM-KAN to predict 
RUL, experiments were conducted on rolling 
bearings under different operating conditions. The 
test bearings have degradation faults such as 
bearing 1_3, bearing 1_4, bearing 2_5 and bearing 
3_4. The distributions are shown in Table 1. 

Table 1. Bearing feature 

Bearing Fault Working Condition 
Bearing1 3 Outer 2100rpm 12kN Bearing1_4 Cage 
Bearing2_5 Outer 2250rpm 11kN 
Bearing3_4 Inner 2400rpm 10kN 

The RUL prediction results of BiLSTM-
KAN are shown in Fig. 6. 

The predicted curves from these bearing 
datasets show a good fit to the actual bearing life 
curves in the vast majority of cases. For 
Bearing2_5, Bearing3_4 data volume larger longer 
time period bearings, there is a certain oscillation 
in the late prediction, when the bearing is in the 
serious failure stage, there is a certain impact on the 
life prediction of the bearing, but the final complete 
failure threshold is correctly converged. In the 
stable wear stage of the bearing, the predicted value 
is very close to the true value, and the surface of the 
proposed model has good performance and can 
cope with different working conditions and express 
the severe failure of the bearing. 

In order to evaluate the performance of the 
proposed model and other models, regression 
metrics such as Root Mean Square Error (RMSE), 
Mean Absolute Error (MAE), and Coefficient of 
Determination R-Square (R2) were used to 



3611Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

evaluate the prediction performance (Guo et al., 
2021). And it was compared with other 
optimisation models in the experiment. The results 
of the metrics for the above four bearings are 
shown in Table 2. 

As can be seen from Table 2, the performance 
metrics of BiLSTM-KAN are improved compared 
to LSTM, GRU and Transformer-BiLSTM. 

The average RMSE is reduced by more than 
18.6% and the MAE is reduced by more than 
26.72%, indicating that the proposed BiLSTM-
KAN has a low prediction error.The R2 is 
improved by at least 1.62% on average, which 
indicates that the regression performance of 
BiLSTM-KAN is better. The analysis results show 
that KAN replaces the fully connected layer to 
improve the prediction performance of BiLSTM. 

 
Fig. 6. RUL prediction results of BiLSTM-KAN for 
bearings under different working conditions

Table 2. RUL prediction performance indexes 

Bearing Index LSTM GRU Transformer-BiLSTM BiLSTM-KAN 
Bearing1_3 RMSE 0.02088 0.02010 0.04024 0.01133 

MAE 0.01759 0.01741 0.03181 0.00982 
R2 0.99370 0.99416 0.97660 0.99814 

Bearing1_4 RMSE 0.02558 0.03330 0.04588 0.01231 
MAE 0.01991 0.02408 0.03400 0.01014 
R2 0.99069 0.98421 0.97003 0.99784 

Bearing2_5 RMSE 0.02450 0.02013 0.06078 0.02248 
MAE 0.02024 0.01396 0.05198 0.01208 
R2 0.99191 0.99454 0.95025 0.99620 

Bearing3_4 RMSE 0.03511 0.02622 0.05193 0.02869 
MAE 0.02351 0.01944 0.03146 0.01929 
R2 0.98499 0.99163 0.96716 0.99498 

 

4. Discussion 
The BiLSTM-KAN model demonstrates superior 
RUL prediction accuracy for train bearings, 
validated by lower RMSE/MAE and higher R² 
values (Table 2). BiLSTM’s bidirectional 

architecture captures both historical and future 
degradation trends, enabling early-stage accuracy 
(Figure 5). KAN’s B-spline-based activation 
functions enhance nonlinear fitting while reducing 
parameter redundancy, critical for embedded rail 
systems. For example, BiLSTM-KAN achieves a 
45.7% lower RMSE than LSTM for Bearing1_3, 
highlighting its efficiency in handling noisy 
vibration signals. Unlike CNN-LSTM, which 
requires extensive data accumulation, BiLSTM-
KAN provides stable predictions from initial 

degradation phases. Transformer-BiLSTM 
struggles with late-stage convergence due to sparse 
attention patterns, whereas KAN’s localized B-
spline adjustments ensure robustness in severe 
failure scenarios. KAN’s interpretability—

visualizing feature weights via spline functions—

addresses the “black-box” distrust in safety-critical 
applications, aiding fault attribution. 

While the BiLSTM-KAN model shows 
promise, its reliance on the XJTU-SY dataset limits 
generalizability due to a lack of real-world 
variability. KAN’s B-spline optimization also 
increases training time by 15–20%, challenging real-
time deployment. Late-stage prediction oscillations 
(e.g., Bearing2_5/3_4) suggest the need for noise 
suppression techniques like wavelet filters. Future 
work should focus on real-world validation, physics-
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based model integration, and KAN optimization for 
edge deployment. 

5. Conclusions 
The article proposes a BiLSTM-KAN based 
network model for train bogie bearing RUL 
prediction, which is of positive significance for the 
safe operation of trains. The method uses BiLSTM 
to extract feature information and capture long-term 
dependencies in bearing time-series data, and 
connects the KAN layer to further access the 
information in the hidden states through a learnable 
nonlinear activation function, thus improving the 
model's ability to fit the data. 

In addition, our team is in the process of 
refining the dataset using our own bearing fault test 
platform for building simulated train bogies(Fig. 7). 
In the future, we intend to use our own dataset, 
which is more related to trains, to validate and test 
the model proposed in this paper, to improve the 
performance of the model and to better ensure the 
safe operation of trains. 

 
Fig. 7. Train bearing fault test platform 
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