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The generalization of machine learning models in out-of-distribution (OOD) scenarios remains a significant
challenge, particularly in the context of high-end equipment diagnostics, where dynamic operating environments
introduce complex distribution shifts. This study proposes a novel intelligent diagnostic framework based on
graph causal intervention, designed to improve model adaptability and robustness under heterogeneous conditions.
The framework leverages causal inference principles to infer pseudo-environment labels, enabling the removal
of environmental confounding effects without requiring explicit environmental annotations. By integrating causal
intervention mechanisms into graph-structured data, the proposed method effectively learns stable causal relation-
ships across diverse environments, enhancing its generalization capabilities. The proposed framework demonstrates
reliable performance in addressing OOD generalization challenges, significantly surpassing conventional methods.
By dynamically regulating the propagation branch count, it achieves optimal recognition accuracy while reducing
redundant computations and feature noise. This study offers a robust and scalable solution for OOD generalization
in intelligent diagnostics, providing a foundation for practical applications in high-end industrial systems.
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1. Introduction

High-end equipment is a critical component of
modern industry and operates in a complex, dy-
namic environment influenced by factors such
as load and temperature. These external factors
frequently cause mechanical component failures,

which severely affect operational efficiency and
significantly increase maintenance costs. Devel-
oping fault diagnosis systems with high real-time
performance and accuracy is crucial to ensur-
ing reliability and stability. In recent years, deep
learning has made significant advances in intelli-
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gent diagnosis, gradually becoming a core tech-
nology for equipment condition monitoring and
fault prediction. By analyzing historical opera-
tional data, deep learning models automatically
extract key features from complex conditions,
enabling high-precision fault prediction. These
models demonstrate exceptional capabilities, par-
ticularly in handling high-dimensional, multi-
variable, and complex interactive data Amiri et al.
(2025).

Specifically, Convolutional Neural Networks
(CNNs) perform excellently in fault identification
using vibration signals Jiang et al. (2024). CNNs
use convolution operations to effectively extract
local time-frequency features from the signals,
enabling accurate classification of various fault
modes. Recurrent Neural Networks (RNNs) and
their variants excel at modeling long-term depen-
dencies in time-series signals Vo et al. (2024).
Multi-scale feature extraction and deep fusion
methods significantly enhance the model’s adapt-
ability in fault diagnosis, particularly in cases of
scarce data or complex environments. This im-
proves diagnostic accuracy and robustness un-
der varying operating conditions and fault modes.
However, traditional deep learning models face
limitations when dealing with complex topolo-
gies and multi-dimensional signal interactions, es-
pecially in high-complexity equipment systems,
where they struggle to capture internal structures
and dynamic changes.

Recently, Graph Neural Networks (GNNs) have
shown great potential in handling complex topolo-
gies and non-Euclidean data, and have been suc-
cessfully applied in fields like autonomous driv-
ing Ji et al. (2024), and intelligent diagnosis Li
et al. (2025). Specifically, in intelligent diagnosis,
a study proposed a synergistic similarity graph
construction method, allowing GNNs to better
capture component relationships, significantly im-
proving fault diagnosis accuracy and robustness
Wang et al. (2024). This novel method offers new
perspectives and technical approaches for the in-
telligent diagnosis of complex systems. However,
most existing GNN models and deep learning
methods assume that training and test data come
from the same distribution. This assumption often

fails in practical applications, especially in high-
end equipment environments. Environmental fac-
tors such as changes and sensor drift can cause
distribution shifts, severely affecting model per-
formance. Existing deep learning models, partic-
ularly when faced with out-of-distribution (OOD)
data, often exhibit overconfidence, leading to in-
accurate predictions and compromising the relia-
bility of critical diagnostic tasks Li et al. (2024).

To address the challenges of OOD data in
high-end equipment operations, this paper pro-
poses an innovative intelligent diagnosis frame-
work based on graph causal intervention. The
framework leverages causal inference principles
and introduces a novel learning objective. It re-
moves environmental interference from the data
by leveraging inferred pseudo-environment infor-
mation, eliminating the need for environmental
labels and addressing environmental confound-
ing biases. This method enables the model to
learn stable causal relationships without relying
on specific environments, thereby improving its
adaptability across environments. Unlike tradi-
tional methods that rely on explicit environmen-
tal labels, the proposed framework enhances the
model’s generalization ability in complex environ-
ments through causal intervention mechanisms,
enabling better handling of dynamic changes and
unforeseen disturbances in complex systems like
mechanical equipment. Notable innovations in-
clude:

(a) The framework introduces a pseudo-
environment label estimator, which adaptively es-
timates environment-related information based on
data characteristics. This eliminates the reliance
on predefined environmental labels and addresses
confounding biases effectively.

(b) A novel learning objective is designed to
integrate causal intervention into graph-structured
data, enabling the model to identify causal fea-
tures while reducing environmental interference,
thereby improving generalization to OOD scenar-
ios.

(c) The framework incorporates a mechanism to
control the propagation branch count, balancing
feature extraction efficiency and environmental
complexity. This results in optimal recognition
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performance under heterogeneous conditions.
This paper is organized as follows: Section 2

explores the causal effects of environmental vari-
ables on GNN performance. Section 3 introduces
the proposed graph causal intervention frame-
work, while Section 4 presents the experimental
setup and analyzes the results. Finally, Section 5
concludes the paper and highlights future research
directions.

2. Causal Insights into the Effects of
Environmental Variables on GNNs

In the current GNN design framework, node rep-
resentation learning relies primarily on aggregat-
ing information from neighboring nodes. Through
iterative updates, GNNs integrate node and neigh-
bor features during network propagation to gradu-
ally generate final node embeddings, which serve
as the foundation for prediction tasks Lin et al.
(2023). Specifically, at the l-th layer, the embed-
ding h(l)

v of node v is updated as follows:

h(l+1)
v = δ

(
Ψ(l)

(
{h(l)

u : u ∈ Γv ∪ {v}},
))

,

(1)
where Ψ(l) is the graph operation function at
layer l, and Γv is the set of neighbors of node v.
Notably, the training objective of GNNs is based
on the ego-graph Gv , which is centered on node
v. The prediction yv for node v is expressed as
fθ(Gv), where fθ represents the parameterized
function of the GNN model.

During the model training process, the Maxi-
mum Likelihood Estimation (MLE) is a widely
used optimization criterion. The goal is to adjust
the model parameters so that the predictive distri-
bution qθ (Y |G) approximates the true data distri-
bution as closely as possible. For node prediction
tasks, the optimization objective is defined by the
cross-entropy loss function:

θ∗ = argmin
θ
− 1

|Vtr|
∑

v∈Vtr

yTv · log (fθ(Gv)) .

(2)
In practice, the relationship between the ego-
graph Gv and its label Y is influenced by both di-
rect interactions and latent environmental factors
M . These variables may include data distribution
biases, external interference, and other complex

factors that constrain model predictions via intri-
cate causal mechanisms.

To better capture this dependency, the model’s
learning objective can be reformulated as an ex-
pectation minimization problem that accounts for
the impact of environmental factors M :

θ∗ = argmin
θ

Em∼ptr(M), (Gv,yv)∼p(G,Y |M=m)[
− y�v log fθ(Gv)

]
. (3)

where Em∼ptr(M) denotes the expectation over the
joint distribution of environmental variables M

and graph structure Gv . Therefore, the model’s
parameter optimization is constrained by the dis-
tribution characteristics of M , which impact the
predictive labels y due to environmental complex-
ity.

3. Proposed Methods

3.1. Hierarchical Graph Network
Modeling

In diagnosing and identifying the states of com-
plex industrial systems, data collected under mul-
tiple working conditions often exhibit significant
nonlinearity and high dimensionality. To address
this challenge, we propose a hierarchical graph-
based modeling approach utilizing GNNs. This
approach transforms time-series data into a struc-
tured graph format, capturing both local fine-
grained features and global behavioral patterns.
Assume there are n distinct working states (e.g.,
varying rotational speeds or damage sizes). Time-
series data collected under each working condition
are denoted as T (k)

n , where k = 1, 2, · · · ,K
represents the k-th condition of state n, and
each time-series segment is labeled as y(n) ∈
{1, 2, · · · ,K}. To effectively capture sequential
features, the original time series T (k)

n is parti-
tioned into non-overlapping subsequences using a
time window of length Δt. Each subsequence is
mapped to a node v

(k)
i,n in the graph. Simultane-

ously, a feature vector h
(k)
i,n is extracted for each

node to represent dynamic behaviors within the
time window. Within each working state, intra-
layer connections are constructed to quantify the
similarity between nodes. Specifically, the Eu-
clidean distance is used to measure the feature
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similarity between any two nodes v
(k)
i,n and v

(k)
j,n .

Using the nearest-neighbor strategy, each node is
connected to its most similar neighbors, forming a
sparse local graph structure G(k)

n =
(
V(k)
n , E(k)n

)
.

This strategy preserves strong node correlations,
enabling precise capture of local dynamic features
under single working conditions.

To characterize global behavioral patterns
across multiple working conditions, we propose
a cross-layer connection mechanism. This mecha-
nism identifies behavioral similarities among dif-
ferent states. For nodes v

(k)
i,n and v

(c)
j,b from dif-

ferent layers, the cross-domain similarity is com-
puted using cosine similarity. When the similarity
between two nodes exceeds a predefined threshold
ς , a cross-layer edge connection is established be-
tween nodes v(k)i,n and v

(c)
j,b . This connection mech-

anism integrates features across multiple working
conditions and models multi-level dependencies,
effectively capturing complex behavioral patterns
across the system.

3.2. Enhancing Model Stability and
Generalization with Causal Inference

To enhance the OOD generalization capability of
GNNs for node attribute prediction tasks, this pa-
per introduces a robustness enhancement strategy
based on causal inference. This strategy guides
the model to discover stable causal relationships
in the data that remain invariant to environmen-
tal shifts. Specifically, we apply a do-operation
to intervene on the environmental variable M

Pearl et al. (2016). The do-operation removes
the confounding effects of M on graph features
Gv . This allows the model to capture the sta-
ble causal relationship qθ (Y | do (G)) between
the graph structure Gv and the label Y , while
avoiding the influence of noise and unstable fac-
tors. While directly computing qθ (Y | do (G)) is
ideal, it is often infeasible in real-world applica-
tions due to high experimental costs and resource
limitations. To address this issue, we adopt the
backdoor adjustment strategy using observational
data to approximate the causal intervention. This
adjustment effectively removes the interference of
environmental factors on predictions.

To enhance the model’s robustness to envi-

ronmental shifts, we propose an approximation
method based on pseudo-environment labels. This
method introduces latent variables to decouple
pseudo-environment labels from graph features
Gv . The process includes designing a pseudo-
environment estimator pΩ (M |G) to infer the en-
vironmental variable M based on the ego-graph
features Gv . The inferred M and ego-graph fea-
tures Gv are fed into the GNN prediction model
for joint optimization, expressed as follows:

log qθ(Y | do(G)) ≥ EpΩ(M |G) [log qθ(Y | G,M)]

−KL(pΩ(M | G) ‖ q0(M)).
(4)

In this formulation, the first term represents the
supervised loss Lsup which improves the model’s
prediction accuracy, while the second term is the
regularization loss Lreg , ensuring the indepen-
dence of M from ego-graph features Gv . This
independence decouples environmental informa-
tion from graph structural dependencies, allowing
the model to identify causal patterns robust to en-
vironmental changes. Consequently, the model’s
generalization to OOD scenarios is enhanced, ad-
dressing challenges caused by data distribution
shifts.

3.3. Dynamic Generalization
Enhancement through
Pseudo-Environment Mechanisms

In complex scenarios, data often lack explicit en-
vironmental labels, which makes determining true
environmental states using prior knowledge chal-
lenging. Moreover, complex node connections of-
ten cause distributional shifts, which degrade the
model’s generalization performance. To address
these challenges, we propose a method called
pseudo-environment representation modeling and
adaptive expert ensemble.

To capture the latent environmental effects,
we introduce a pseudo-environment estimator
pΩ (M |G). This estimator infers the environ-
mental variable M during the multi-layer fea-
ture aggregation process of the graph neural net-
work. Specifically, the pseudo-environment vari-
able m

(l)
v , considered as a latent variable, is

inferred from the node feature vectorh(l)
v and
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represented as a categorical distribution. To re-
solve the non-differentiability issue of categori-
cal distribution sampling, we adopt the Gumbel-
Softmax technique, which ensures stable gradient
propagation through continuous approximation.
The node embedding, incorporating the pseudo-
environment representation, is updated as follows:

Θ(l)
v = softmax

(
W (l)h(l)

v

)
, (5)

where W (l) represents the learnable weight matrix
at layer l. Using this method, pseudo-environment
labels are dynamically inferred during training,
ensuring effective modeling of node-level categor-
ical distributions.

In OOD generalisation tasks, models must pos-
sess the capability to dynamically adapt to vari-
ations across diverse environments. To enhance
the model’s adaptability to changing environmen-
tal conditions, we propose the hierarchical adap-
tive expert ensemble GNN. This method employs
multiple expert branches to dynamically update
node embeddings. Within this framework, each
expert branch aggregates node features dynami-
cally based on the inferred pseudo-environment
labels and the ego-graph structure Gv . The node
feature update is formulated as:

h(l+1)
v = ϕ

(
Z∑

z=1

m(l)
v,z

( ∑
u∈N (v)

1√
δvδu

W
(l,z)

h(l)
u

)

+W (l,z)h(l)
v

)
,

(6)
where δv and δu represents the degrees of nodes
v and u, used to normalize neighboring node fea-
tures. W̃ (l,z) and W (l,z) are transformation matri-
ces for the current node and its neighbors in expert
branch Z, respectively. The activation function
ϕ () captures nonlinear interactions among node
features. This framework can be interpreted as a
causal representation of GCNs, where the dynam-
ically inferred m

(l)
v,z guides the selection of Z con-

volutional filters, enabling adaptive propagation.

3.4. The Overall Framework

To tackle the challenges of OOD tasks in com-
plex industrial environments, this paper presents

an intelligent diagnostic framework integrating
causal inference, a hierarchical adaptive expert
mechanism, and GNNs. The framework combines
causal modeling with adaptive feature learning
to dynamically adjust to varying working con-
ditions, enhancing robustness and generalization
performance for complex, non-Euclidean data.
The specific design includes the following three
core steps:

(a) Vibration signals and node relationships are
first processed and transformed into a multi-level
graph representation. Using graph-based model-
ing, the framework captures both the topologi-
cal structure and multi-scale feature interactions
among nodes.

(b) To mitigate distributional shifts caused by
changing environmental conditions, the frame-
work incorporates pseudo-environment variables
as latent intermediate variables. A pseudo-
environment label estimator is designed based on
causal inference theory.

(c) A hierarchical adaptive expert mechanism is
introduced during the node feature learning pro-
cess. At each layer, node representations are up-
dated using a multi-branch expert network. Expert
branches dynamically select optimal convolution
kernels based on the inferred pseudo-environment
labels, enabling efficient node feature aggregation
and interaction modeling.

The proposed intelligent diagnostic framework
integrates the robustness of causal inference with
the flexibility of the adaptive expert mechanism.
It achieves accurate node attribute prediction and
enhanced generalization under varying working
conditions, offering an efficient and reliable solu-
tion for intelligent diagnostic tasks.

4. Experimental Setup and Results
Analysis

4.1. Experimental Platform and Dataset
Description

This study uses the BUCEA Bearing dataset, col-
lected from a self-constructed doubly-fed wind
turbine test platform. The dataset contains six
types of bearing fault conditions, divided into two
categories: (a) Single fault states: inner ring fault
(IF), outer ring fault (OF), rolling element fault
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(BF), and normal state (NA); (b) Compound fault
states: outer ring + rolling element fault (OBF)
and inner ring + rolling element fault (IBF). To
evaluate the model’s adaptability and generaliza-
tion under various fault conditions, faults with
different groove sizes were simulated: 0.4×1 mm,
2×2 mm, 2.8×3 mm, 3.4×4 mm, and 4×4 mm.
During data acquisition, five rotational speeds
were set to simulate operating conditions under
varying wind speeds: 500 r/min, 700 r/min, 900
r/min, 1000 r/min, and 1100 r/min. A sampling
frequency of 25.6 kHz was used to ensure high-
resolution acquisition of vibration signals, en-
abling detailed capture of subtle fault character-
istics and dynamic variations. The experimental
design comprises two schemes: (a) BUCEA-R ex-
periment: The fault size was fixed at 2×2 mm, and
rotational speeds were varied to generate ID and
OOD data. This experiment evaluated the model’s
adaptability to distribution shifts across different
rotational speeds. (b) BUCEA-S Experiment: At
a fixed rotational speed of 900 r/min, the impact
of varying fault sizes on model performance was
analyzed. This experiment aimed to assess the
model’s generalization performance and robust-
ness under varying fault scales.

4.2. Experimental Implementation Details

During data preprocessing, vibration signals were
segmented using the sliding window technique
with a window length of 1024. Each vibration
signal, under a specific fault condition, had a to-
tal length of 102400 and was divided into 100
nodes after sliding window processing. These
nodes were then used to construct and train graph-
structured data. To maintain consistency and rigor,
the dataset was split into 60% for training, 10%
for validation, and 30% for testing. All models
were implemented under a unified hardware and
software environment to ensure fairness and result
reproducibility. PyTorch served as the implemen-
tation framework, with a learning rate of 0.001
and 300 training epochs.

4.3. Results and Analysis
4.3.1. Impact of Rotational Speed and Fault

Size on Generalization

This section examines the model’s generalization
performance in ID and OOD scenarios using the
BUCEA-R and BUCEA-S datasets. The analysis
focuses on how rotational speed variations and
fault size differences influence the model’s perfor-
mance and explores the potential reasons behind
these effects.

Using the BUCEA-R dataset, experiments were
conducted with a fixed fault size of 2×2 mm to
analyze the model’s performance under various
rotational speeds. The results are shown in Fig.1.
The model exhibited better generalization when
trained on high-speed ID data and tested on low-
speed OOD data. Conversely, training on low-
speed ID data and testing on high-speed OOD
data led to a significant performance decline. This
suggests that high-speed vibration signals, charac-
terized by stronger amplitudes and high-frequency
features, enable the model to learn clearer and
more stable fault patterns during training. As a re-
sult, the model effectively captured core fault fea-
tures and maintained high recognition accuracy,
even when tested on lower-speed data. In contrast,
low-speed samples exhibited weaker signals with
fault patterns lacking diversity and generalizabil-
ity. This limitation restricted the model’s ability
to fully learn the complexity of fault distributions
during training.

Fig. 1. OOD recognition results under different rota-
tional speed and fault size.

Further analysis with the BUCEA-S dataset in-
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vestigated the impact of fault size variations on
model performance. Training on large fault sizes
led to significantly improved recognition perfor-
mance on small-size OOD data. This improve-
ment is attributed to the distinct feature patterns
of large-size fault signals, which allow the model
to learn clearer fault representations during train-
ing and demonstrate strong feature transfer during
testing. Conversely, training on small-size fault
samples, characterized by weak and indistinct sig-
nals, limited the model’s ability to extract crit-
ical features effectively. As a result, the model
struggled to adapt to feature distribution changes
when tested on large-size OOD data, resulting in
a significant decline in recognition accuracy.

4.3.2. Comparison of OOD Generalization
Methods

To evaluate the model’s performance in OOD
tasks, this study employs GCN as the base encoder
and systematically compares several classical and
state-of-the-art OOD generalization methods. The
experimental results are presented in Table 3.
The comparison methods specially include: ERM,
IRMArjovsky et al. (2019) and SRGNNZhu et al.
(2021). The results as shown in Fig.2 indicate
that the proposed method achieved superior per-
formance across all experimental datasets, par-
ticularly on the highly heterogeneous BUCEA-
R and BUCEA-S datasets, where it demonstrated
significant performance advantages. Compared to
methods such as IRM and SRGNN, the proposed
approach achieved substantial accuracy improve-
ments. This suggests that the high heterogeneity
and substantial distribution shifts in the BUCEA-
R and BUCEA-S datasets present severe chal-
lenges to traditional generalization methods. By
adaptively estimating pseudo-environment labels,
the proposed approach effectively captured core
feature patterns under varying conditions, improv-
ing modeling precision and generalization capa-
bility for distribution-shifted data.

4.3.3. Impact of Propagation Branch Count
on Model Performance

To better understand the impact of key hyper-
parameters on model performance, this study

ERM SRGNN IRM Proposed

Fig. 2. Comparison of results across different base-
lines.

systematically analyzed the propagation branch
count Z, assessing its role and limitations in
OOD generalization tasks. The experimental re-
sults are shown in Fig.3. The results indicate a
non-monotonic relationship between model per-
formance and Z. When Z is small, the limited
number of propagation branches fails to capture
the multi-dimensional features of complex envi-
ronments, restricting the model’s ability to adapt
to environmental variations. This leads to subop-
timal detection performance and reduced general-
ization capability.

Fig. 3. Impact of branch count Z on model perfor-
mance.

As Z increases, model performance improves,
suggesting that the pseudo-environment estimator
effectively captures diverse feature patterns across
environments and facilitates efficient propagation
path regulation. At Z=4, the model achieves its
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optimal state by balancing branch count and en-
vironmental feature complexity. This balance en-
sures the efficient extraction and propagation of
critical information, resulting in optimal OOD
recognition performance on heterogeneous data.
However, as Z continues to increase, model per-
formance begins to degrade. This degradation is
mainly caused by excessive branches introducing
redundant computations and feature noise, which
weaken the model’s focus on critical features
and ultimately reduce its generalization capability.
This phenomenon is especially pronounced in the
highly complex dataset, highlighting that an ex-
cessive branch count can compromise the model’s
adaptability to diverse environments.

5. Conclusion

This study introduces a novel diagnostic frame-
work based on graph causal intervention to tackle
the challenges of out-of-distribution (OOD) gen-
eralization in intelligent diagnostics. By integrat-
ing causal inference mechanisms, the framework
infers pseudo-environment labels, effectively mit-
igating the influence of environmental con-
founders and enhancing adaptability across dy-
namic and heterogeneous conditions. The frame-
work demonstrates superior performance com-
pared to existing methods, showcasing its ability
to capture stable causal relationships in graph-
structured data and significantly reduce the im-
pact of distribution shifts. This robust and scalable
framework is broadly applicable to fault detection
tasks in high-end equipment diagnostics, address-
ing the complexities of dynamic environments and
unforeseen disturbances. Future research will fo-
cus on extending this approach to other complex
systems, exploring its potential for broader gener-
alization and improved causal reasoning.
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