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The goal of this paper is to propose a maintenance policy for a deteriorating system which integrates concepts of 
modern prescriptive maintenance. In particular, the policy focuses on systems where inspections cannot be 
performed at all times and repairs/replacements incur high costs. This is the case, for example, of some aviation 
applications where inspections can be performed when the aircraft is grounded, and interventions such as repairs or 
replacements may necessitate specialized equipment or incur significant delays. 
In this paper, we propose a maintenance policy where it is assumed that the system under study must work, with 
prespecified performances, for a fixed time horizon, at the end of which it is systematically replaced, regardless of 
its state, for a cheap/negligible price. Within this time horizon, inspections are regularly planned which return the 
true degradation level of the unit. If a failure is detected at an inspection time, corrective replacements can be carried 
out immediately, albeit incurring a much higher cost than the preplanned replacement at the end of the mission. 
Another possible action that the policy can take is to derate the system. This action entails voluntarily reducing the 
performances of the system (thereby incurring a cost) with the aim of decelerating its degradation process and 
mitigating the risk of failure. The optimal maintenance policy is defined by optimizing an economic performance 
criterion. The lifetime of the unit is defined by using a failure threshold model. 
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1. Introduction 
Today, aircraft operational performance 
(reliability, availability, maintenance costs, etc.) is 
a key factor in flight punctuality and airline 
profitability, synonymous with profits and 
customer satisfaction (Manikar et al. 2022). 
Airlines monitor the performances of their aircraft 
very carefully, as it strongly reflects the quality of 
their internal operational organization (operations, 
maintenance, engineering) and therefore their 

profitability (Saintis et al. 2006). This performance 
is symbolized by operational reliability, which 
encompasses the frequency of technical failures 
and associated necessary maintenance tasks that 
lead to an interruption in operations, defined as a 
delay of over 15 minutes at take-off, a flight 
cancellation, or a diversion. For airlines, these 
unscheduled service interruptions generate not 
only direct costs in the form of increased fuel 
consumption, crew accommodation/duty time, 
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passenger accommodation, and financial 
compensation, but also indirect costs in the form of 
image loss and impact on customer loyalty, among 
others (Saintis et al. 2009).  
A typical mission for a short-haul aircraft can be 
composed, for example, of ten round trips from the 
main base to an external base. After the last 
landing, the aircraft is scheduled to recover 
overnight at the main base, in preparation for the 
next mission (which may differ from the first). 
During this recovery period, time-intensive 
maintenance actions can be performed, clearing the 
aircraft of possible critical failures (Hugues et al. 
2004). 
On the other hand, during the mission, the 
possibility of performing maintenance actions is 
limited. However, when the aircraft is on the 
ground (during a stopover between two flights), it 
is regularly inspected, and the degradation level of 
some subsystems can be measured. If these 
inspections reveal some highly degraded or failed 
state, then emergency maintenance operations can 
be planned. By definition, maintenance performed 
on the aircraft during the mission is on-line 
maintenance, which incurs a high cost. Conversely, 
at the end of the mission, preplanned maintenance 
actions can be performed with a negligible effect 
on the mission. 
In this context, we aim to conceive a maintenance 
policy which integrates elements from modern 
prescriptive maintenance, a new framework that is 
gaining increased attention from the maintenance 
literature (see Meissner et al. 2021, Pinciroli et al. 
2023, and Giacotto et al. 2025). 
In a prescriptive maintenance context, decisions 
are taken by optimizing a performance measure 
that accounts for all functionalities of a system 
(Longhitano et al. 2021). In practice, this is often 
implemented (Esposito et al. 2022, Esposito et al. 
2023) by assuming that, among the possible 
maintenance actions, the policy can adjust some 
operating parameters which voluntarily reduce the 
performances of the system, incurring a cost, but at 
the same time mitigating the probability of adverse 
events. 
In this paper, we propose a prescriptive 
maintenance policy that can be applied, for 
example, to a non-critical subsystem of an aircraft, 
such as an electrical power converter supplying 
passenger cabin equipment. The driving idea is 
that, within the context of the rigid schedule of the 
aircraft’s mission, adjusting some operational 

parameter (such as the output power of the power 
converter), may offer an additional degree of 
freedom which may provide an overall more 
convenient tradeoff. 
The rest of the paper is organized as follows. 
Section 2 describes in detail the proposed policy. 
Section 3 illustrates the adopted degradation 
model. Section 4 describes the formulation of the 
cost function. Section 5 presents the results of an 
applicative example, while Section 6 closes the 
paper. 

2. Policy description  
The unit is assumed to operate under an 
aeronautics-like exploitation cycle. This cycle 
(hereinafter referred to as “mission”) is composed 
of a predetermined number  of “active” periods 
(APs) (encompassing taxiing, flight, and in general 
all activities from departure gate to arrival gate) 
during which the unit experiences substantial 
operational stresses and degradation. The mission 
also includes “inactive” periods (corresponding to 
time intervals where the aircraft is grounded) 
during which maintenance interventions can be 
carried out. We assume that during these latter 
periods the unit does not degrade. 
The failure of the unit occurs when its degradation 
level passes for the first time a predetermined 
threshold, say . We assume that failure is not 
self-announcing, meaning that it can be detected 
only through an inspection. The mission is deemed 
successfully complete if the unit remains 
operational at the end of the -th AP. The 
endpoints of the APs (i.e., the epoch at which the 
period ends) are denoted by , where 

. 
We suppose that at the end of each AP an 
inspection is carried out which reveals the exact 
degradation level of the unit. A failed unit remain 
inoperative until the end of the mission. This 
scenario incurs a penalty cost that is proportional to 
the portion of the mission where the unit has been 
inoperative. 
Conversely, an unfailed unit continues to operate 
until the end of the next AP. 
The policy is developed by assuming that at the 
inspection time (i.e., at the end of each AP), it is 
possible to derate the unit. This action reduces 
operational stress and slows down degradation 
(and thus reduces the failure risk), though incurring 
a cost linked to the performance loss. The decision 
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about derating or not a unit is made by using a 
condition-based rule. 
The derating factor (i.e., the amount of derating) is 
determined adaptively based on the measured 
degradation level and on the current age of the unit. 
Table 1 summarizes the condition-based rule 
which informs decision-making at the -th 
inspection time . In Table 1,  is the measured 
degradation level at ,  denotes the value of 
the derating factor in the -th AP (i.e., 
between  and ), and  is a function 
which adaptively determines the derating factor 
accounting for the current degradation 
measurement  and the age of the unit  (and is 
indexed by the parameters vector . 
 
Table 1. Condition-based rule which informs decision-
making at the inspection time. 

Degradation at  Decision 

 Unit is inoperative until the 
end of the mission 

 

Continue operation in the 
next AP, set derating factor 
for the next AP to 

 
 
At the end of the -th AP the mission is terminated 
and the unit is replaced regardless of its state. 
This action restores the unit to an “as good as new” 
state and, consequently, the time elapsing between 
two successive replacements defines the cycle of a 
renewal process. 
The components of the vector  are the design 
parameters vector of the policy, whose optimal 
value  should be determined by minimizing a 
selected cost function, which accounts for costs 
linked to the performance loss incurred by potential 
derating. 

3. Degradation modeling 
The gamma process (Van Noortwijk 2009) 

 is a monotonic increasing 
Markovian stochastic process characterized by 
gamma-distributed independent increments. 
Hence, it is fully defined by an initial condition 
(here ) and the probability density 
function (pdf) of its generic increment 

: 
 

 

where ,  is the scale parameter, 
 is the complete gamma function, 

 is the shape parameter, and  is 
a non-negative monotonic increasing function 
referred to as the age function. The functional form 

 is a very common choice in the 
literature. 
Following Tseng et al. (2009) and Esposito et al. 
(2023), modifying the derating factor is supposed 
to only impact the age function of the gamma 
process, while the scale parameter remains 
constant. Based on this, on the fact that the derating 
factor can only be changed at the inspection times 
(i.e., it stays constant in between inspections), and 
knowing that the gamma process has independent 
increments, the degradation process is fully 
specified. In fact, denoting by  the 
degradation process of the unit, the probability 
density distribution (pdf) of the degradation 
increment between two inspections 

 can be expressed as: 
 

 

where  and 
. The expression of , where  

is the derating factor assigned by the policy at , 
gives explicit evidence of how the derating affects 
degradation. 
Then, to obtain , (i.e., the degradation level 
at the th inspection), it suffices to compute: 

 

Computing , consequently, necessitates 
knowing the sequence of derating factors assigned 
by the policy , which themselves 
depend on the sequence of observed degradation 
measurements . This 
interdependence introduces mathematical 
complexity which prevents us from formulating a 
simple expression for the distribution of . 
For this reason we resorted, in this paper, to Monte 
Carlo simulation. 
We assume that the failure of the unit is defined by 
the first (and only) passage time of its degradation 
process to a predefined threshold, denoted by . 
Consequently, the lifetime  of the unit is defined 
as: 
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Given that the derating factor of the unit can 
(potentially) change multiple times over the course 
of its lifetime, it is not possible to express the 
cumulative distribution function (cdf) of  with a 
simple formulation. However, we can express the 
complementary conditional cdf of  given the 
value of the degradation measurement  
at time , under the assumption that  and 
that the derating factor is fixed to  as: 

 
 

 

Where the “ ” at the superscript in  
and  indicates that the cdf is 
formulated under the assumption of derating factor 
fixed to . The cdf  is 
formulated as: 

 

 

where  is the lower incomplete gamma 
function. 
The probability in Eq. (4) can be intended as the 
conditional probability that a unit which is not 
failed at time  survives until time , given the 
degradation measurement  at , under 
the assumption that the derating factor does not 
change from its maximum value . 
Therefore, at any inspection time , given the 
measured degradation level , we can 
evaluate the probability of surviving the rest of the 
mission, with derating factor set to  as: 

 

 

4. Formulation of the cost function 
The cost model is formulated considering a failure 
penalty cost rate  and costs related to the 
derating.  
Specifically, the penalty cost is computed as the 
product of  and the duration for which the unit 
remains inoperative during the mission. Since 
failure is not self-announcing, this duration should 
rigorously include also the time the unit spends in 
a failed state before the failure is detected. For 

simplicity, in this paper, we assume that this time 
is equal (i.e., can be approximated) as half of the 
AP where the failure occurs. So, for example, if a 
unit fails within the -th AP (and therefore failure 
is detected at time ) then the penalty cost will be 
equal to: 

 
On the other hand, the cost of operating the unit 
with derating factor  in the th AP (i.e., between 

 and ) is computed as the product of a cost 
rate  (which depends on the specific derating 
factor assigned) and the length of the AP .  
The adopted cost function is the long-run average 
maintenance cost rate, formulated as (see Ross 
1983): 

 

where  is the maintenance cost over the course 
of the whole mission, which can be computed as: 

 

where  is the cost increase in the th AP, whose 
value depends on the measured degradation level 
at  and is reported in Table 2, and  is the number 
of APs in which the unit has been in operation. If 
the mission is successfully completed , 
otherwise . 
 
Table 2. Possible scenarios at each inspection time and 
corresponding maintenance costs and cycle length 
increments. 

Degradation 
at   

  
  

 
4.1. Description of the simulator 
Due to the mathematical complexity arising from 
the interdependence between the derating and the 
degradation process, we resort to Monte Carlo 
simulation to evaluate the expression of the cost 
function in Eq. (7). The expectation is computed 
as:  where  is the 
number of simulated runs and  is the 
maintenance cost in the -th simulated run. The 
pseudocode implemented to compute  is 
detailed in Table 3. 
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Table 3. Pseudocode used to compute  
 SIMULATOR 
1 For  to  
2  , , ,   
3  For  to  
4   sample from  
5   
6   If  then 
7     

 
8    Go to line  
9   Else 
10     

 
11     
12    
13   
14   
15  

 
The number of simulated runs  should be 
determined by balancing numerical accuracy and 
computational complexity, which both increase 
with . Once a sufficiently high value of is 
adopted, the optimal cost  and the 
corresponding optimal set of design parameters  
can then be determined by numerically optimizing 
(over the design parameter space) . In this 
paper, the simulation algorithm illustrated in Table 
3 has been implemented in Matlab® and the 
optimization is conducted via a genetic algorithm. 

5. Numerical example 
In this section, we present the results of an example 
of application of the proposed policy, along with an 
exploratory sensitivity analysis. 
To fully specify the policy, it is necessary to select 
a functional form for . In this paper, for 
simplicity, we chose a step function where only 
three values of the derating factor are considered: 

 

 

where  and  are design parameters of the 
policy,  is the minimum allowable value of the 
derating factor,  is an intermediate level 
( ), and  is the 

cdf in Eq. (4). As explained in the previous Section, 
Eq. (4) represents the conditional probability, 
given the latest degradation measurement 

, of surviving the rest of the mission, under the 
assumption that the derating factor is fixed to . 
Consequently, adopting the function  as in Eq. 
(8), essentially, leads the policy to always set the 
derating factor to , unless the probability of 
surviving the rest of the mission (under the 
assumption that the derating factor is fixed to ) is 
lower than a certain threshold . In this latter case, 
the derating factor will be adjusted either to an 
intermediate level  or to the minimum level 

, depending on whether the probability of 
surviving the rest of the mission is greater than 
another threshold . 
The choice of the functional form in Eq. (8) allows 
us to determine the derating factor by taking a 
holistic view of the system. In fact,  
simultaneously accounts for the current state of the 
system, its age, and the length of the remaining part 
of the mission. 
From Eq. (8) it is possible to derive, at any 
inspection time  ( ) the values  and 

 that correspond, respectively, to 
 and 
. 

The values  and  can be envisaged as 
two age-dependent degradation thresholds. 
Consequently, the derating factor adjustment can 
also be summarized as follows: 

 

Table 4 reports the values of the parameters of the 
degradation model and of the cost model used in 
the example. The inspection times are 

 and  Simulations are conducted 
with . 
 
Table 4. Values of the parameters of the cost model and 
of the degradation process. 

      
      

 
Given that only three values of the derating factor 
are considered, also the function  will take 
only three values: 
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Table 5 reports the value of the optimal cost , 
along with the corresponding optimal values of the 
design parameters  and . 
 
Table 5. Optimal value of the long-run average 
maintenance cost rate and corresponding values of the 
design parameters. 

   
   

 
Figure 1 shows the behavior of the cost function 

 in the proximity of the optimum. The 
values of  displayed in each panel of this figure 
have been obtained by letting one design parameter 
vary (i.e.,  for the first panel and  for the 
second) in the proximity of the optimum while the 
other is set to its optimum value (see Table 5). 
Figure 1 confirms that the set of values 

 reported in Table 5 is a minimum for 
. 

 

 
Fig. 1. Behavior of the cost function  in the 
proximity of the optimum. 
 
Figure 2 gives a visual representation of the policy. 
In this figure, the thin solid lines depict the 
degradation paths of 30 simulated runs under the 
optimal policy. The red and green dashed 
horizontal lines represent (from top to bottom, 
respectively) the corrective and preventive 
thresholds, while the two dotted blue curves report 
the values of  and . 
 

 
Fig. 2. Degradation evolution of 30 simulated runs 
under the optimal policy. 
 
To highlight the utility of adopting the prescriptive 
action, we compared the performances of the 
proposed policy (hereinafter denoted as ) against 
those of a special case of , denoted as , where 
the derating is not available and , 

. Rigorously,  can be obtained from  by 
setting . 
 

 
Fig. 3. Optimal values of  obtained under  and 

 as a function of the failure penalty cost . 
 
Figure 3 depicts the optimal cost  obtained 
under both  and , as a function of the failure 
penalty cost . 
Figure 3 shows that the difference between the 
optimal cost yielded under both  and  
increases as  increases, implying that  
outperforms  progressively more and more. 
Figure 3 reflects the fact that, as already mentioned, 
the rationale behind the adoption of the prescriptive 
action is to use the derating to manage the 
probability of surviving the mission. As the failure 
penalty cost increases, it becomes more and more 
important to manage this probability. 
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Figure 4 further corroborates this explanation. It 
reports the optimal values of  and  obtained 
under  as a function of . The figure gives 
evidence of how, as the failure penalty cost 
increases, the probability that the derating factor 
will be adjusted from  to  or  increases. 
 

 
Fig. 4. Optimal values of  and  obtained under  
as a function of . 
 
Some more insights into how the policy  
achieves the cost saving with respect to  can be 
obtained by analyzing how the optimal cost  
splits into the contributions of failure penalty- and 
derating factor-related costs, denoted as  
and , respectively (of course it is 

). Figure 5 reports these contributions 
under  (in blue) and  (in red), in the case 

. 
 

 
Fig. 5. Optimal value  under  (in blue) and  
(in red) split into its contributions  and  
when . 
 
Obviously, the contribution  obtained under 

 is null. From Figure 5 we can observe that the 
contribution of  is significantly lower 

under  then under , meaning that the policy 
 can minimize (compared to ) the probability 

of failure and therefore increase the probability 
that the mission will be completed successfully. 
Of course,  will compensate a part of these 
savings but, in the considered setup, when 

, adopting  over  will generate savings of 
. 

6. Conclusions 
In this paper, we proposed a prescriptive 
maintenance policy for a degrading unit which 
undergoes an aeronautics-inspired exploitation 
cycle. The policy is developed assuming that the 
unit must complete a prespecified mission and that, 
within this mission, inspections can be performed 
which return the exact degradation level of the unit. 
This information can then be used, to decide 
whether to derate the unit or not. Derating has the 
effect of reducing the performances of the unit, 
therefore decelerating the degradation process of 
the unit and reducing the risk of failure. However, 
it incurs a cost linked to the performance loss. 
The driving idea of the policy is to investigate if 
and how, when the maintenance intervention 
epochs are constrained, for example by the aircraft 
mission, the derating can offer an additional degree 
of freedom and provide a better overall tradeoff. 
Obtained results show that, in the adopted setup, 
the proposed prescriptive policy can provide 
noticeable savings with respect to a similar policy 
where the derating action is not available. 
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