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The safety of thermohydraulic systems with two-phase flow is directly related to the Critical Heat Flux (CHF), 
which characterizes the transition from nucleate boiling to film boiling with a significant reduction of heat transfer 
efficiency. CHF prediction is crucial in nuclear power plants (NPPs), where thermohydraulic margins are critical 
for safe operation. Recent efforts to improve CHF prediction in vertical tubes have increasingly relied on data-
driven approaches using Artificial Intelligence (AI) and Machine Learning (ML) techniques. Nevertheless, purely 
data-driven models often lack intrinsic physical information, limiting their broader acceptance for practical 
applications in safety-critical systems like NPPs. In this work, we explore the use of physics-informed neural 
networks (PINNs) for CHF prediction in vertical tubes. The Westinghouse (W-3) empirical correlation, an 
empirical CHF correlation developed by Westinghouse Electric Company for water-cooled reactors, is employed 
as the physical model integrated into the learning process of the PINN. Specifically, two different forms of 
physical loss function for PINN are formulated. The first form is based on simple differences (SD) between the 
predicted CHF from the model and the CHF calculated using W-3 correlation; the second form is based on partial 
derivatives (PD) of the W-3 correlation computed with respect to the input parameters. The developed PINN 
models are validated using experimental CHF data from the US Nuclear Regulatory commission (NRC), provided 
by the Working Party on Scientific Issues and Uncertainty Analysis of Reactor Systems (WPRS) Expert Group on 
Reactor Systems Multi-Physics (EGMUP) task force on AI/ML for Scientific Computing in Nuclear Engineering 
projects, promoted by the OECD/NEA. The results indicate that the predictive performance of the proposed PINN 
models exceeds those of the Look-Up Table (LUT) and purely data-driven deep neural networks, confirming the 
benefit of integrating physical knowledge into the learning process for enhancing accuracy and reliability of the 
prediction model. 
 
Keywords: Nuclear reactor safety, Thermohydraulic systems, Critical heat flux, Artificial intelligence, Physics-
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1. Introduction 
In the design of thermohydraulic systems 
involving two-phase flow, Critical Heat Flux 
(CHF) is a crucial concept to be considered. 
CHF is a parameter that marks the transition 
from nucleate to film boiling, leading to a 
significant reduction in heat transfer efficiency 
and to potential system failure (Bruder, Bloch, 
and Sattelmayer 2016). CHF plays a relevant 
role for the safety design of systems like nuclear 

reactors and steam generators (Chang and Baek 
2003). For the operation of nuclear power plants 
(NPPs), CHF is a key parameter in relation to 
thermohydraulic margins and overall operational 
safety (Chang and Baek 2003). The departure 
from nucleate boiling ratio (DNBR) must be 
such to ensure safety, with the U.S. Nuclear 
Regulatory Commission (NRC) requiring a 
minimum DNBR of 1.3 (Todreas and Kazimi 
2011). Despite extensive research, a 
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comprehensive physical description of CHF 
remains elusive due to the complexity of two-
phase flow interactions (Bruder, Bloch, and 
Sattelmayer 2016). 

CHF prediction models have evolved over 
the years from empirical correlations (Tong 
1967; Katto 1992) and mechanistic models (Lee 
and Mudawwar 1988; Celata et al. 1999) to 
empirical methods such as CHF look-up tables 
(LUTs). The most widely used CHF LUT, 
developed by Groeneveld et al. in 2006, 
correlates CHF values across varying conditions 
(Doroshchuk, Levitan, and Lantzman 1975; 
Groeneveld 2019). Despite being effective, 
LUTs lack physical insights and contain data 
gaps. Recent advances in artificial intelligence 
(AI) and machine learning (ML) have introduced 
novel CHF prediction methods. In (Jiang and 
Zhao 2013), a hybrid model was developed by 
combining support vector regression (ν-SVR) 
with radial basis function networks (RBFNs) to 
predict CHF, and the obtained results showed 
superior performance compared to standard SVR 
and empirical correlations approaches. In (He 
and Lee 2018), the work on ν-SVR was extended 
to address sparsely distributed CHF data and 
demonstrated improved accuracy when focusing 
the training near critical inflection points. In 
(Khalid et al. 2024), an ensemble of deep sparse 
autoencoders (AEs) for feature extraction was 
developed and coupled with a deep neural 
network (DNN) as a meta-learner for CHF 
prediction. This method addressed the 
limitations of previous models by leveraging a 
large dataset that covered a wide range of 
operating conditions, thereby significantly 
enhancing prediction accuracy and reliability. In 
(Zhao et al. 2020), a hybrid framework that 
integrated ML with domain knowledge (physics-
informed ML) was developed. This approach 
extended the applicability of the model and 
improved both generalization capabilities and 
predictive performance compared to traditional 
models. In (Mao and Jin 2024), ML models were 
combined with physical models to develop 
physics-informed ML (PIML) for CHF 
prediction, and the results showed that LUT-
informed NN was the most stable and robust 
model. 

While hybrid and ensemble models have 
improved prediction accuracy, optimizing their 
structure remains a challenge. It is essential to 

maintain a balance between complexity and 
overfitting, while ensuring meaningful 
performance improvements. To address this 
issue, (Ahmed, Gatti, and Zio 2025) proposed an 
optimized ensemble of neural network (NN) 
models that enhances prediction accuracy while 
mitigating model complexity for CHF 
predictions, thereby achieving a balance between 
ensemble complexity and performance 
improvements. 

Although the above reviewed AI/ML-based 
approaches have contributed to improving CHF 
prediction accuracy, they are predominantly 
data-driven and, thus, lack physical insights. The 
studies in (Zhao et al. 2020; Mao and Jin 2024) 
mentioned the implementation of PIML, but 
involving primarily hybrid models that combine 
ML with empirical or LUT-based predictions. 
These models typically function as error-
correction mechanisms, where ML models are 
trained on the errors in empirical or LUT-based 
predictions. The final CHF prediction is, then, 
obtained by adding the predicted error from the 
ML model with the CHF value from the 
empirical or LUT-based model. Such approaches 
lack explicit formulation of physical information 
within the learning process of AI/ML models. 

To address this limitation, this work 
explores the use of physics-informed neural 
networks (PINNs) for CHF prediction in vertical 
tubes. Specifically, the Westinghouse (W-3) 
correlation (Tong 1967), an empirical CHF 
correlation developed by Westinghouse Electric 
Company for water-cooled reactors, is employed 
as the physical model integrated into the learning 
process of the PINNs. This correlation is simple, 
easy to implement, and suitable for both 
subcooled and saturated boiling conditions. 
Based on this empirical correlation, two distinct 
forms of physical loss function in PINNs are 
formulated: 1) Simple Difference (SD) form, 
which is based on the difference between the 
CHF predicted by the model and the CHF 
calculated using the W-3 correlation; and 2) 
Partial Derivative (PD) form, which is based on 
computing the PD of the W-3 correlation with 
respect to the input parameters, allowing the 
incorporation of CHF variations due to changes 
in these parameters. These two approaches 
enable the model to capture the local behavior of 
CHF with respect to each variable. By 
integrating these approaches into the PINN 
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framework, this work aims to enhance both 
prediction accuracy and generalization, bridging 
the gap between data-driven modeling and 
physically consistent CHF prediction. The 
proposed method is validated using experimental 
CHF data originally presented in (Groeneveld 
2019) and made available by the Working Party 
on Scientific Issues and Uncertainty Analysis of 
Reactor Systems (WPRS) Expert Group on 
Reactor Systems Multi-Physics (EGMUP) task 
force on AI and ML for Scientific Computing in 
Nuclear Engineering projects, promoted by the 
OECD/NEA (LE CORRE et al. 2024). The 
obtained results show that the proposed method 
accurately predicts the CHF values under 
specific flow conditions, and significantly 
outperforms the traditional LUT-based approach. 

The rest of the paper is organized as 
follows. Section 2 presents the problem 
formulation. The proposed PINN model for CHF 
prediction is described in Section 3 and the case 
study used to validate its performance is 
presented in Section 4. In Section 5, the results 
are presented and discussed. Finally, Section 6 
presents the concluding remarks on the work 
performed. 

2. Problem Formulation  
In this paper, we consider a water-cooled nuclear 
reactor (a heat transfer system) at the design stage, 
for which accurate prediction of CHF is necessary 
for ensuring effective heat transfer. In this system, 
a set of laboratory measurements of P relevant 
physical variables,  are available under defined 
boundary conditions, at a generic observational 
point i: 

  (1) 

These measured physical variables include both 
geometrical and hydraulic variables, such as 
hydraulic or equivalent tube diameter, heated 
length, pressure, mass flux and outlet quality. 
These variables affect the CHF phenomenon, 

, directly or indirectly, at the same 
observational point i. 
We assume the availability of the following: 

(i) A physical model of the system 
describing the physical behavior of the 
CHF phenomenon, ; 

(ii) A dataset  
containing the experimental 
measurements collected over a specific 
period of time, consisting of: 
� the measurement matrix , 

whose element  is the measured 
physical quantity j at the observation 
point i, with  and 

; 
� the corresponding CHF vector 

, which contains the 
CHF measurements  at each 
observation point i, with 

. 

On the basis of the above assumptions, 
given a new vector of measurements  taken 
at the current observation, the objective of the 
present work is to develop a PINN model that 
integrates the physical model, , into the 
learning process, which receives in input  and 
predicts in output the corresponding CHF value 

. 

3. Proposed Method 
The method developed for CHF prediction is 
sketched in Fig. 1. It consist of the development 
of the PINN model (Section 3.1) and the 
application of the developed model for CHF 
prediction (Section 3.2). 

 

Fig. 1.Proposed PINN model for CHF prediction. 
 
3.1. Development of the PINN Model 
The development of the PINN model consists of 
the three key steps: 1) analysis of the selected 
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empirical correlation to be integrated into the 
training process (Section 3.1.1); 2) formulation 
of the PINN loss function (Section 3.1.2); and 3) 
training of the PINN model (Section 3.1.3). 

3.1.1. Analysis of Empirical Correlation 
Due to its broad applicability in the nuclear 
industry and its ease of derivation, the 
Westinghouse correlation (W-3 correlation), 
developed by (Tong 1967) for predicting DNB 
under flow boiling conditions in nuclear reactor 
design has been selected for the implementation 
of the PINNs in this work. 

The W-3 correlation highlights the 
significance of both the local DNB heat flux and 
its location. It was developed based on the 
primary parameters influencing flow patterns 
and CHF, namely local pressure, mass flux and 
thermodynamic quality. System pressure 
determines the saturation temperature and 
associated thermal properties, which, in turn, 
influence bubble size, buoyancy effects and the 
degree of subcooling required for bubble 
formation. By incorporating local enthalpy, the 
model accounts for subcooling effects on bubble 
dynamics. Through empirical fitting of available 
experimental data, (Tong 1967) formulated a 
correlation that integrates pressure (P), mass flux 
(G) and thermodynamic quality (X), along with 
local enthalpy ( ) and tube diameter (D) as a 
geometric factor. Each function within the 
correlation was derived by plotting an 
independent parameter against measured CHF 
data while keeping all other variables constant 
(Tong and Tang 1997). The correlation for CHF 
is expressed as the product of multiple functional 
dependencies: 

 (2) 

By explicitly deriving each function in Eq. (2), 
the W-3 correlation is obtained: 

 

(3) 

where  is expressed in Btu/hft2. The 
parameter ranges for validity covered by the W-3 
correlation and their respective units are 
summarized in Table 1. 

Table 1. Validity ranges of the parameters for the 
W-3 Correlation. 

Parameter Range Unit 
  psia 
  lb/hft2 
  in 
  in 
  - 

  Btu/hft2 
 

Although the W-3 correlation was 
originally derived for flow inside vertical tubes, 
it has demonstrated strong agreement with flow 
conditions outside fuel rod bundles when the 
hydraulic diameter is substituted for the actual 
tube diameter. When employing empirical 
correlations such as this to determine operating 
conditions and safety margins in nuclear 
reactors, highly conservative boundaries are 
typically implemented to ensure safe operation 
under all circumstances (Bruder, Bloch, and 
Sattelmayer 2016). However, reducing over-
conservatism through innovative AI-driven 
approaches can provide significant economic 
benefits, including cost savings and increased 
productivity through the optimal utilization of 
available resources. 

3.1.2. Formulation of the PINN Loss Function 
In accordance with the International System of 
Units (SI), the validity ranges of the W-3 
correlation parameters (Table 1) have been 
converted to the following values: 6.89–15.86 
MPa for pressure, 1356–6781 kg/m²s for mass 
flux, 0.005–0.018 m for diameter, 0.25–3.66 m 
for heated length, and ≥930 kJ/kg for inlet 
enthalpy. These conversions facilitate the direct 
application of the correlation to experimental 
datasets. The W-3 correlation, with adjusted 
coefficients to account for the transition to SI 
units, is expressed as: 
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(4) 

Since the proposed PINN model aims to 
predict the actual CHF value, , using five 
input parameters, , 
the PINN is designed such that the predicted 
CHF is: 

 (5) 

where  is the vector of PINN weights, which 
are the trainable parameters optimized by 
minimizing the physically consistent loss 
function: 

 (6) 

with 

 (7) 

where  is the data-driven loss function: 

 (8) 

 is the physical loss function, and  is the 
hyperparameter that controls the relative 
importance assigned to . The physical loss 
function is formulated using two distinct forms: 

A. Simple difference (SD) form 

This form is based on the simple differences 
(SD) between the predicted CHF from the model 
and the CHF calculated using the W-3 
correlation (Eq. (4)). This form integrates into 
the learning process the physical relationships 
described by the correlation. The SD-based 
PINN loss function,  is given by: 

 (9) 

 

B. Partial derivative (PD) form 

This form is based on computing the partial 
derivatives (PD) of Eq. (4) with respect to the 
input parameters. The objective is to incorporate 
the variations in CHF due to changes in the input 
parameters, as described by the empirical 
correlation (Eq. (4)). This form captures the local 
behavior of CHF in relation to each variable. 
Specifically, the PD-based PINN loss function, 

, is formulated as: 

 (10) 

where 

 (11) 

Here  is the PD of the empirical CHF 
correlation, , derived from Eq. (4) with 

respect to j-th input parameter;  is the PD 

of the predicted CHF from the PINN model with 
respect to the j-th input parameter, which can be 
efficiently computed using the Automatic 
Differentiation feature inherent in NNs. 

3.1.3. Training of the PINN Model 
Based on the PINN loss function forms 
formulated in Section 3.1.2, the PINN model is 
trained using the training dataset D by 
minimizing Eq. (6) with the Adam optimizer 
through the backpropagation algorithm. 

3.2. Application of the Trained PINN 
For a given test input  measured at the 
current observation, the trained PINN model 
(Fig. 1, bottom) receives in input  and 
provides in output the prediction of the 
CHF, . 
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4. Case Study 

To validate the proposed CHF prediction model, 
the publicly available CHF experimental dataset 
published by the US Nuclear Regulatory 
Commission, originally from (Groeneveld 2019), 
is used. This dataset is a collection of 59 different 
experiments performed in vertical water-cooled 
uniformly heated tubes during the past decades 
and made available by the WPRS-EGMUP task 
force on AI and ML for Scientific Computing in 
Nuclear Engineering projects, promoted by the 
OECD/NEA (LE CORRE et al. 2024). The 
dataset contains 24579 observations of seven 
input parameters and one output variable (CHF). 
The input parameters include geometric (tube 
diameter, heated length), measured (pressure, 
mass flux, inlet temperature) and calculated 
(outlet quality, inlet subcooling) parameters, 
covering a wide range of system conditions. In 
this paper, only five input parameters (tube 
diameter, heated length, pressure, mass flux, 
outlet quality) are considered, following the 
recommendation of the benchmark organizer (LE 
CORRE et al. 2024). The data is partitioned into 
80% for model development (training set) and 
20% for model evaluation (test set). 

To assess the performance of the developed 
PINN model on the test dataset 

, the following metrics are 
employed (LE CORRE et al. 2024): 
1) the root mean square percentage error 

(RMSPE), calculated as: 

 (9) 

where  is the amount of data points in 
. 

2) the mean absolute percentage error (MAPE), 
computed as: 

 (10) 

3) -error, calculated as: 

 (11) 

where  is the mean of the measured CHF 
values,  in . 

5. Results and Discussion 
To determine the optimal PINN model, the weight 
of the physical loss, , is initially set to zero in Eq. 
(7), which results in a purely data-driven DNN 
model. In this case, various DNN architectures are 
explored by adjusting hyperparameters such as 
learning rate, number of layers, number of nodes 
(neurons) per layer and batch size using a grid 
search approach. Consequently, the optimal data-
driven DNN model is obtained with five hidden 
layers made by 90, 70, 70, 60 and 60 neurons, 
respectively. The ReLU activation function is 
used in all layers except the output layer, where 
the softplus activation function is employed to 
ensure positive CHF predictions. Subsequently, 
by using the obtained DNN architecture, the 
PINN model  is developed and trained with 
the Adam optimizer using a learning rate of 
0.0001, a batch size of 24, and a number of 
epochs of 900. To determine the optimal PINN 
model, the weight of the physical loss term, , in 
Eq. (7) is varied between 0 and 1 with step of 
0.001 using a grid search approach and the 
optimal values is determined based on cross-
validation prediction accuracy. Both proposed 
physical loss formulations (Eqs. (9) and (10)) are 
evaluated. The optimal values of  are found to be 
0.04 for the SD-based PINN and 0.001 for the 
PD-based PINN. Figure 2 compares the CHF 
prediction of the proposed PINN models with 
those of the LUT method on the test dataset, 
against measured experimental values. The results 
indicate that a higher proportion of CHF data 
points predicted by the PINN models fall within a 
±10% error band than those predicted by the LUT. 
This demonstrates the effectiveness of the PINN 
models in capturing the input-output relationships 
underlying CHF, and the robust generalization 
capability. 

The performance of the proposed PINN 
models have been verified by comparison to three 
state-of-the-art prediction methods based on LUT, 
Support Vector Regression (SVR) and DNN. The 
SVR model is trained and optimized using the 
same 80% training dataset used to develop the 
proposed models, whereas the DNN corresponds 
to the optimal purely data-driven DNN model 
obtained when  is set to zero. 
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(a) 

 
(b) 

Fig. 2. Predicted vs. measured CHF on test set for (a) SD-based PINN and (b) PD-based PINN. 

Table 2. Comparison of the accuracy of CHF prediction models on the test set. 

Model 
Performance metrics 

RMSPE MAPE  Within ±20% error 
LUT 43.05 22.31 0.0606 67.05% 
SVR 20.75 12.28 0.0379 85.31% 
DNN 16.61 10.13 0.0175 88.20% 
SD-based PINN 17.00 10.09 0.0171 88.16% 
PD-based PINN 16.38 10.29 0.0168 87.08% 

 
Table 2 reports the values of the 

performance metrics obtained for each method. 
The results indicate that both the DNN and PINN 
models outperform the LUT and SVR approaches, 
with the PINN models demonstrating superior 
performance across nearly all metrics. 
Specifically, the PINN models (both SD-based 
PINN and PD-based PINN) achieve the lowest 
RMSPE and MAPE values, as well as the smallest 
Q2-error, highlighting their strong predictive 
capability. This performance is attributed to the 
integration of physical information into the 
learning process, enhancing the accuracy and 
reliability of the model. It is important to note that 
although the SD-based PINN achieves the lowest 
MAPE value (10.09), the PD-based PINN exhibits 
superior overall performance, with the lowest 
RMSPE (16.38) and Q2-error (0.0168). 
Furthermore, it significantly outperforms the SD-
based PINN, which has an RMSPE of 17.00 and a 
Q2-error of 0.0171. These results indicate that 
incorporating the partial derivatives of the 
empirical correlation (i.e., the rate of change of 
CHF with respect to variations in the input 
parameters) into the learning process of the 
AI/ML model is more effective than integrating 

the differences between the predictions of the 
empirical correlation and those of the AI/ML 
model. 

6. Conclusions 
This paper presents a new approach to CHF 
prediction in vertical tubes based on PINN 
models to enhance predictive accuracy and 
generalization capabilities. Specifically, 
information derived from the Westinghouse (W-
3) correlation, an empirical CHF correlation 
developed by Westinghouse Electric Company 
for water-cooled reactors, is used as the physical 
model and integrated into the learning process of 
the PINN. Based on this correlation, two 
different forms of physical loss function for 
PINN are formulated. The first form is based on 
the simple differences (SD) between the CHF 
values predicted by the model and the CHF 
values calculated using the empirical correlation. 
This form integrates into the learning process the 
physical relationships described by the 
correlation. The second form is based on 
computing the partial derivatives (PD) of the 
correlation with respect to the input parameters. 
This form incorporates the variations in CHF 
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described by the empirical correlation due to 
changes in the input parameters, to capture the 
local behavior of CHF in relation to each 
variable. The proposed method is validated using 
experimental CHF data from the WPRS-
EGMUP task force on AI/ML for Scientific 
Computing in Nuclear Engineering projects, 
promoted by the OECD/NEA. The obtained 
results show that the proposed PINN models 
achieve superior accuracy in CHF prediction, 
with lower errors across all metrics considered 
when compared to conventional methods such as 
the LUT approach and SVR. Furthermore, when 
compared the performance of the two formulated 
PINN models, it is found that incorporating into 
the learning process of the AI/ML model the 
PDs of the empirical correlation (i.e., the rate of 
change of CHF with respect to variations in the 
input parameters) is more effective than 
integrating the differences between the 
predictions of the empirical correlation and those 
of the AI/ML model. 

Future research will focus on embedding 
multiple physical information within the NNs 
architecture, for the development of multi-
physics-informed NNs which could further 
enhance the robustness and reliability of the 
models and increase the precision of the learning 
algorithm by incorporating multiple fundamental 
physical principles into the NN training process. 
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