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A dynamic PSA in form of an integrated deterministic probabilistic safety analysis (IDPSA) combines the enhanced 
realism of a deterministic safety analysis (DSA) with the advantages of a probabilistic safety analysis (PSA). The 
GRS software tool MCDET (Monte Carlo Dynamic Event Tree) for dynamic PSA allows to analyse and quantify 
the influence of aleatory and epistemic uncertainties on the behaviour of dynamic systems over time. It can be used 
both to identify unforeseen accident sequences as well as to quantify the dependencies between different end state 
scenarios and the respective uncertain input parameter(s). 
The effects of the high-dimensional parameter space induced by variations of the system state and the timing of 
events are simulated and represented using a Monte Carlo approach in combination with the dynamic event tree 
simulation. This results in large samples of event trees and time-dependent scenarios requiring state-of-the-art meth-
ods of data analysis for analysing the huge amount of data generated. 
This paper introduces how data analysis and machine learning can be used together with domain knowledge to 
extract and condense the relevant information, to estimate safety margins and to determine the most significant 
discrete and continuous parameters. Furthermore, it is outlined how various techniques can be combined in an ex-
ample application of an accident during mid-loop operation in the ADAMO project (Application of Advanced Dy-
namic PSA Methods for Assessing the Effectiveness of Human Actions for Accidents in Mid-Loop Operation). It 
also illustrates how interactive data visualization can be used to understand system processes and component inter-
actions leading to the time series of dependent variables derived in an IDPSA. 
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1.  Introduction 

This paper provides an example of the 
combined use of machine learning and domain 
knowledge in the result processing of an IDPSA. 
The dynamic PSA method MCDET (Monte Carlo 
Dynamic Event Tree) has been developed for per-
forming an IDPSA (Kloos and Peschke 2015, 
Peschke 2018).  

MCDET is a combination of Monte 
Carlo simulation and the dynamic event tree 
(DET) method which can be applied for analysing 
and quantifying the influence of uncertainties, 
both aleatory and epistemic, on the behaviour of 
dynamic systems over time. This particularly in-
volves random timing and random ordering of 
events and their effects on the progression of a dy-
namic process. In addition to MCDET, the Crew 
Module (Wenzel et al. 2020) has been developed 
to model and simulate time dependent human ac-
tion sequences which may depend on system 
states and stochastic influences.  

After this introduction, a short descrip-
tion of the analytical steps performed during the 
calculation of the IDPSA results is given in Sec-
tion 2. In Section 3, the event and the correspond-
ing action model of the accident scenario are out-
lined. This IDPSA example has been performed 
as part of a research project called ADAMO (Ap-
plication of Advanced Dynamic PSA Methods for 
Assessing the Effectiveness of Human Actions 
for Accidents in Mid-Loop Operation) funded by 
the Swiss Nuclear Authority ENSI (Eidgenö-
ssisches Nuklearsicherheitsinspektorat) (Wenzel 
et al. 2020, Wenzel et al. 2021, Mateos Canals et 
al. 2022, Mateos Canals and Eraerds 2023) and 
covers a large range of analysis objectives de-
tailed in Section 4. The variables used as input of 
the MCDET analysis as well as in the result pro-
cessing are presented in Section 5. Section 6 pro-
vides details on how machine learning can be 
used for a fast grouping of the time series of vari-
ables in an IDPSA. In this context, it should be 
noted that the sheer number of these time series 
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makes a manual approach unfeasible. The deriva-
tion of failure implicants based on the groups of 
time series presented in Section 6 is shown in Sec-
tion 7 using the example of those implicants that 
led to primary side design pressure. Finally, Sec-
tion 8 presents how an additional software tool 
developed by GRS has been applied to understand 
the structure of the dynamic event tree and the pa-
rameter development of selected variables.  
 
2.  Steps of the Analysis 

The following steps have been found useful in 
analysing the complex time dependent results of 
an IDPSA: 

� Definition of analysis objectives: Definition 
of the questions to be answered by the 
IDPSA. 

� Feature engineering: Modelling the input of 
a dynamic PSA requires first to identify the 
relevant discrete and continuous uncertain-
ties, and second, to understand how a desired 
system behaviour (e.g., manual opening of a 
high-pressure letdown system) can be imple-
mented in a deterministic simulation code. 
The necessary simulation variables are stored 
in the MCDET output. However, these output 
variables may not necessarily be the most ef-
fective features for understanding the impact 
of uncertainties on the resulting system end 
states. Feature engineering involves combin-
ing the available output variables into the 
most meaningful features to address the 
analysis objectives. 

� Feature selection: Typically, not all availa-
ble output variables provide useful infor-
mation to achieve the analysis objectives. In 
addition to feature engineering, feature selec-
tion is necessary to identify the most relevant 
features. Care must be taken to identify the 
causal relationships between the different 
output variables. Features should be engi-
neered and selected to be as independent and 
orthogonal as possible. 

� Definition of result groups: Once the anal-
ysis objectives are defined and feature engi-
neering and selection are completed, machine 
learning methods can be employed to gain in-
itial insights into the most relevant groupings 
of time series provided in the IDPSA output. 
A result group is characterized by a specific 
set of parameter values or parameter ranges 

that predominantly lead to one of the defined 
end states. To ensure the effectiveness of this 
initial grouping, only the most relevant and 
independent features should be utilized. 
Given the large number of parameters and 
time series involved, employing machine 
learning for this grouping significantly re-
duces the time required to achieve the analy-
sis objectives. 

� Definition of failure implicants: The term 
implicant refers to a set of feature values or 
ranges of feature values that result in one of 
the defined end states (cut sets in classic 
PSA). Identifying these implicants relies sig-
nificantly on domain knowledge about the 
system’s behaviour. Domain knowledge fa-
cilitates the use of features that exhibit causal 
correlations with other features and enables 
the translation of an implicant into a coherent 
narrative explaining how the failure state is 
achieved. 

� Investigation of unclear results: In some in-
stances, an initial analysis may identify sets 
of parameter values or ranges that correspond 
to more than one end state. In such cases, 
more detailed investigations into the system's 
behaviour are necessary to fully understand 
the driving forces that leads to the end state. 
These situations often provide opportunities 
to gain new insights into the system's behav-
iour. 

� Investigation of ‘counter-intuitive’ results: 
In certain cases, clear implicants can be iden-
tified, however, these implicants may contra-
dict intuitive expectations. In such scenarios, 
more detailed studies are required to resolve 
the apparent discrepancies. 

� Focus on specific analytical objectives: 
Analysis objectives often emphasize particu-
lar areas of interest. During the final stages of 
the analysis, sequences related to these focal 
points can be examined in more depth. 

 
3.  Event and Action Model 

The scenario under investigation involves a Ger-
man PWR operating in a mid-loop configuration, 
specifically in the phase designated as “cold sub-
critical / primary system pressure-tight closed” 
(C) and is based on the study presented in (Babst, 
2003). During this phase, the primary system is 
filled to three-quarters of the primary loop diame-
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ter, and the residual heat removal (RHR) system 
utilizing three out of four available lines is re-
sponsible for evacuating the decay heat generated 
by the reactor core. At this stage, the accumula-
tors and the emergency injection pumps are not 
operational. However, one steam generator re-
mains filled and available as a backup heat evac-
uation feature via the secondary side, should the 
need arise. 

The postulated initiating event is the 
“Failure of the RHR system triggered by a spuri-
ous actuation of the reactor protection system 
(RPS)”. The above-mentioned start and boundary 
conditions are expected to significantly reduce 
automatic interventions from various subsystems, 
thereby increasing the reliance on operator ac-
tions to manage the situation. Specifically, the 
RPS action is activated due to a spurious breach 
of the emergency cooling criteria, leading to the 
interruption of the RHR system's heat removal 
mode and its replacement with safety injection 
mode. In response, the three available RHR 
pumps, along with three out of four extra borating 
system pumps (EBP), start injecting coolant into 
the primary system with zero feed pressures of 
12 bar and 150 bar, respectively. Without inter-
vention from the operators, the evacuation of de-
cay heat is disrupted, and the pressure in the pri-
mary system (PPCS) increases exponentially. 

To assess the operator response to this 
event, an operator action model has been devel-
oped. This model includes all potential actions 
and measures that the plant personnel can take to 
mitigate the consequences of the event. The oper-
ator action model presented in this study is based 
on a human problem solving process model, 
which serves as a framework for understanding 
the sequence of actions that operators may under-
take in response to an abnormal situation. Specifi-
cally, this human problem solving model based on 
the distinct phases developed by Fassmann et al. 
(Fassmann, 2004) provides the basis for this ap-
proach.  

In this example event, the operator’s 
problem solving process is initiated by realizing 
the failure of the RHR system. During this Initia-
tion Phase, the operators detect the loss of RHR 
and begin to collect visual information to assess 
the situation and to reflect the appropriate re-
sponse. In the subsequent Diagnosis Phase (i.e. 
Problem Solving Phase), the operators are faced 
with the decision to either apply a knowledge-

based or rule-based approach to diagnose the 
event and to specify the necessary actions. If no 
suitable procedure can be identified by the opera-
tors, the model incorporates the possibility of re-
visiting the manual for recovery procedures. If 
still no procedure is clear, the event follows its 
course until safety components come into play 
(see below). Otherwise, the operators proceed to 
the Execution Phase. 

Within the Execution Phase, the opera-
tors may attempt to bypass the emergency cooling 
criteria and reset multiple RPS signals. If any of 
these actions fails, no further actions are pursued. 
The operators may or may not reset the EBS pump 
RPS signal and manually switch off the EBS 
pumps. The next step involves the check of the 
primary system pressure, which affects the subse-
quent actions. If the primary pressure exceeds 
35 bar the operators will open the high-pressure 
letdown (HPLD) station to decrease the pressure 
before restarting the RHR system. Conversely, if 
the primary pressure is less than 35 bar the opera-
tors will directly restart the RHR and open the 
low-pressure letdown (LPLD) station. If these ac-
tions are not successful additional recovery means 
are available and the model accounts for these 
contingencies. 

Several components could play a critical 
role in mitigating the event during the transient. 
These components include: 

� The pressurizer (PRZ) valves consist of one 
relief valve (RV) and two safety valves (SV1, 
SV2), required at pressures of 164, 169, and 
175 bar, respectively. 

� The EBS check valves (EBSV) located on 
each available EBS loop (three in total). 
These valves limit EBS injection to 150 bar. 

� The main steam valves (MSV) include one 
relief control valve (RCV) and one safety 
valve (SV), which are required at pressure 
levels of 2 bar and 87 bar, respectively, if the 
residual heat is removed via the secondary 
side. 

� The emergency feedwater pump (EFWP) 
would be automatically engaged if the level 
in the steam generator drops to 5 m. 

This structured approach to operator de-
cision-making within the OAM ensures that all 
potential responses are systematically analysed 
and incorporated into the model to simulate the 
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operator’s problem solving process in response to 
the initiating event. 

For carrying out the IDPSA, MCDET 
was first coupled to the MCDET Crew Module to 
generate the time distributions for the involved 
human actions and second to GRS’s thermal-hy-
draulic simulation code ATHLET (Wielenberg et 
al., 2019). 100 DETs have been generated in the 
ADAMO project, comprising 11775 time series 
for the various variables defined in the MCDET 
input. A clear analytical approach such as that 
presented in Section 2 is therefore a sensitive 
means for maximising the insights gained from 
the IDPSA. 
 
4.  Objectives of the Analysis 

The specific analysis objectives in the described 
example are related to the operator’s measures in 
the mitigation process. The analysis aims to pro-
vide the following results: 

� Statements on the effectiveness of manual 
measures. 

�� Identification of critical points in the se-
quence of actions. 

In addition, statements regarding the 
main implicants for the four resulting system state 
categories listed in Table 1 should be derived, as 
well as an understanding of the main influence 
factors on the time at which the first three system 
state categories are reached and the remaining 
time (safety margin) between the last operator ac-
tion and the entry time of these system states. 
 

Table 1. Resulting system state categories as 
defined in Section 4 

 
Category Explanation Definition 

1 Primary side design 
pressure (PPCS) 

pPCS > 228 bar 

2 Secondary side design 
pressure (PS) 

pS > 116 bar 

3 Core damage, high surface 
temperature 

T > 1200 °C 

4 Timeout, t = 50,000 s 
reached without exceeding 
other thresholds 

None of the 
other 
categories 

 
5.  Variable Definition 

In total, 143 simulator variables are defined in the 
MCDET input for this IDPSA. As detailed in Sec-

tion 2, the aim is to simulate the operator 
measures that could be carried out in the regarded 
mid-loop accident scenario. To simulate the man-
ual switch off of the EBS pumps or the commis-
sion of the RHR, HPLD and LPLD stations, sev-
eral ATHLET simulator variables need to be ad-
justed at precise times. For instance, activating the 
manual operation of the RHR requires the modi-
fication of a total of twelve simulator signals. Ad-
ditionally, system failures are modelled by intro-
ducing variables to represent the availability of 
various valves and pumps as well as the valve 
cross-sections at their times of failure. Aleatory 
variables are included in the input to account for 
uncertainties regarding the timing of human ac-
tions and system failure events. Three main target 
variables are used in the full IDPSA analysis:  

� Main end state categories (primary side de-
sign pressure, secondary side design pres-
sure, core damage, timeout).  

� Time when the end state was reached. 
� Period between the last operator action and 

the time when the different end states are 
reached. 

 
5.1.  Feature engineering and selection 

Feature engineering and selection has led to the 
analysis features defined in Table 2. For each of 
these features, an additional time variable is de-
fined indicating when the corresponding system 
change is initiated by adjusting the necessary sim-
ulation parameters. These time variables are indi-
cated by the prefix "t_" preceding the correspond-
ing variable name. 

Collectively, these variables account 
for the effects of uncertainties related to human 
actions as well as those associated with system 
availabilities. 

 
Table 2. Definition of the features for the ADAMO 

analysis 
 
Feature Explanation 

RHR # started RHR systems  
LPLD LPLD (0: not. opened/ 1: opened) 
HPLD1 HPLD1 (0: not. opened/ 1: opened) 
HPLD2 HPLD2 (0: not. opened/ 1: opened) 
LPPI Categorical variable depending on the 

low-pressure pump injection (LPPI). 
0: = no LPPI 



1448 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Feature Explanation 
1: = LPPI from >=1 LPP but not for the 
full time 
2: LPPI from >= 1 LPP for the full time 
3: LPPI for the full time from all LPPs 

PRZV Denotes which PRZ valve fails last and 
if it fails in open or closed state. 
Value = 0: no failure 
Value < 0: open failure 
Value > 0: closed failure 
Abs(value) = 1: PRZ-RV fails last 
Abs(value) = 2: PRZ-SV1 fails last 
Abs(value) = 3: PRZ-SV2 fails last 

#PRVC  #PRZ-RV cycles + #PRZ-SV1 
cycles + #PRZ-SV2 cycles 

MSV Denotes which MS valve fails last 
and if it fails in open or closed 
state. 
Value = 0: no failure 
Value < 0: open failure 
Value > 0: closed failure 
Abs(value) = 1: MS-RCV fails last 
Abs(value) = 2: MS-SV fails last 

EBSP 
EBSV 

EBS pumps (on. 1/off: 0) 
EBS valves (avail.: 1/unavail.: 0) 

EFWS 
 
 
 

EFWP 
-1: failure 
0: not demanded 
1: available 

 
6.  Definition of Result Groups 

As explained in Section 2, machine learning is 
used for binning the time sequences into several 
distinct result groups based on the values of three 
features defined in the previous section. These 
three features are RHR, PRZV and MSV and have 
been selected using importance measures, such as 
random forest importance (Breiman, 2001) and 
permutation feature importance, combined with 
domain knowledge. Domain knowledge has been 
used to decide which of those features with the 
best importance measure would provide sensible, 
physically explainable, and meaningful separa-
tions. 

The results from the first categorization 
are presented in Table 3. Each row on the left side 
corresponds to a distinct result group and a pre-
dicted result category. Each row on the right side 
to an observed result category (see Table 1). The 
columns on the left side (RHR, PRZV and MSV) 
show the feature values for each result group, a 
star indicates that the selected time series don’t 

depend on the feature. The columns on the right 
side provide information about the number of ob-
served time series (#), the mean probability (mean 
p.) and the observed result category (cat.). 
 

Table 3. Result groups of the generated time 
series, coloured by category (Table 1) as 

described in Section 6 
 

RHR PRZV MSV Time series 
   # mean p. cat. 

0 3 * 483 6.7 E-05 1 
 10 2.7 E-09 2 
 10 9.4 E-06 4 

0 0 2 319 5.2 E-06 2 
0 1&2 2 348 4.8 E-06 2 
* < 0 * 3,380 1.3 E-02 3 
   1,325 2.0 E-02 4 

6 1.6 E-07 2 
3 0 < 2 2,042 5.6 E-01 4 
0 0 < 2 2052 3.5 E-01 4 

381 4.3 E-03 3 
0 1 & 2 < 2 954 1.7 E-02 4 
   465 5.3 E-03 3 

 
The first categorization already provides 

a good separation for some of the defined failure 
states; further analysis is needed to understand the 
causes behind the failure states of each observed 
time series. The probabilities presented in Table 3 
should be interpreted with caution as it can be as-
sumed that operators would likely initiate more 
attempts to commission the HPLP, LPLP, and 
RHR than accounted for in this study. 
 
7.  Search for Final State Implicants for 

Primary Pressure (PPCS) Exceeding 
Design Pressure 

To distinguish the time series of the result group 1 
belonging to category 1 (PPCS exceeding design 
pressure) from those belonging to other catego-
ries, the following additional features are used: 
MSV, EFWS, EBSV, t_PRZV, and, in the case of 
MS valve failure, the time difference between the 
failure of MS valve and the failure of a PRZ valve. 

The implicants presented in Table 4 can 
be understood with the following event chain is 
assumed: Once PRZ-SV2 fails closed, the pres-
sure begins to increase. In case of an early failure 
of PRZ-SV2, the design pressure is reached be-
fore the EFWP is demanded. The time threshold 



1449Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

after which a failure of PRZ-SV2 triggers a re-
quest for the EFWP depends on the states of MSV 
and EBSV. In case of an open failure of the MS-
RCV, secondary coolant is more rapidly lost and 
the EFWP is demanded earlier. Depending on the 
PRZ-SV2 failure time, as well as the state of MSV 
and EBSV, the successful activation of the EFWP 
may or may not be sufficient to prevent the reach 
of design pressure. 

The different failure implicants, along 
with the mean probability for each implicant 
across all DETs, are listed in Table 4 for MSV < 2. 
The definition of a failure implicant is chosen 
conservatively, meaning that a combination of 
feature values is assumed to lead to the damage 
final state unless contradictory observations are 
made. For example, in the case of failure impli-
cant 2 in Table 4, a timeout event is observed for 
t_PRZV = 425 min, indicating that, if the PRZ-
SV2 fails after this time, the heat transfer between 
the primary and secondary sides is sufficiently ef-
fective to prevent reaching design pressure. For 
MSV < 2, all observed time series not included in 
the failure implicants listed in Table 4 result in a 
timeout. In contrast, a failure of the PRZ-SV2 at 
t = 375 min leads to design pressure, even though 
the EFWS was successfully initiated.  
 
Table 4. Failure implicants for a PPCS exceeding the 

design pressure; variable description is given in 
Section 5 

 
MSV EBSV EFWS t_PRZV 

[min] 
Mean 

Probability 

0 0 -1/0 * 8.75 E-07 
0 0 1 < 425 6.36 E-07 
0 1 -1 * 4.99 E-05 
-1 0 * * 7.82 E-08 
-1 1 -1 * 7.97 E-06 
 0 -1/0 * 1.65 E-08 

1 1 -1/0 * 7.36 E-06 
*  Variable does not influence the result 

  
Translated into successful valve demand 

cycles, this means that if PRZ-SV2 fails after 84 
cycles, it results in design pressure, whereas if the 
PRZ- SV2 fails after more than 224 cycles, it 
leads to a timeout. This is one cases in which the 
performed IDPSA leads to new knowledge about 
the importance of an uncertain aleatoric variable 

like the failure time/cycle of a valve. The provi-
sion of implicants or, in a second step, prime im-
plicants can be used to generate IDPSA results in 
a convenient way to be used for enhancing an ex-
isting PSA model. 

In the case of a failure of the MS-SV 
(MSV = 2), the key continuous variables are the 
time difference between the failure of the PRZ-
SV2 and the failure of the MS-SV. If the PRZ-
SV2 fails more than 30 min after the MS-SV, the 
secondary side design pressure is reached before 
the primary side design pressure. Conversely, if 
PRZ-SV2 fails less than 18 min after the MS-SV, 
the primary side design pressure is reached first. 

Regarding the analysis objectives, it was 
found that among the different manual measures 
(RHR, HPLP1, HPLD2, LPLD), the observed 
correlation between high PPCS and the successful 
initiation of RHR is the least likely to occur under 
the null hypothesis of no correlation (p-value = 
1.5 E-26), followed by LPLD (p-value = 1.5 E-
13) and HPLD1 (p-value = 1.4 E-10). This can be 
interpreted as indicating that the initiation of RHR 
is the most effective manual measure to prevent 
reaching design pressure. To successfully com-
mission the RHR without the need to start the 
HPLD first, the pressure control must be checked 
within approximately 65 min after the spurious 
signal activation. Otherwise, PPCS will already 
be too high when the corresponding actions are 
carried out. 

Another important factor is the remain-
ing time between the last operator action and the 
time when primary design pressure is reached. 
This time is influenced by continuous as well as 
categorical features. Permutation feature im-
portance (PFI) is employed to compare the influ-
ence of different features. The PFI is a model in-
spection method that measures the contribution of 
each feature to the statistical performance of a fit-
ted model by randomly shuffling the values of a 
single feature and observing the resulting degra-
dation in model performance. 

In contrary to the impurity-based ran-
dom forest importance, the permutation feature 
importance does not exhibit a bias toward high-
cardinality features and is therefore better suited 
for comparing the significance of different influ-
ence factors. A random forest regressor was used 
to generate a model for predicting the available 
time. 
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Fig. 1. Permutation feature importance for the predic-
tion of the time period between the last operator action 

and the time PPCCL design pressure is reached. 
 

The decrease in accuracy scores for the 
studied features is shown in Fig. 1. The number of 
PRZ valve cycles (#PRVC) before failure has the 
highest permutation feature importance, followed 
by the availability of the EBSVs. When the 
EBSVs are unavailable, the mean remaining time 
decreases from approximately 390 min to 
300 min. 
 
8.  Use of Interactive Data Visualization 

Occasionally, the observed results contradict in-
tuition. In such cases, it is important to have a tool 
available to further investigate the event sequence 

and variable development for a given time series. 
To address this need, the MCDET 
EventTreeViewer has been developed. This is a 
Dash-based graphical user interface (GUI) that fa-
cilitates interactive investigation of generated 
DETs. Fig. 2 presents a snapshot of the MCDET 
EventTreeViewer. 
 
9. Summary 

Based on the example of an IDPSA for a mid-loop 
accident scenario induced by a spurious actuation 
of the RPS, the processing of the results based on 
machine learning and domain knowledge has 
been presented focussing on the potential end 
state category “primary side pressure exceeding 
design pressure”. The main influence factors for 
this end state category have been identified and 
different implicants and their probability distin-
guished. Since the main influence factors identi-
fied for the result scenario are system availabili-
ties, an additional analysis has been conducted to 
understand the importance of various manual 
measures regarding the end state analysed.  

In addition, the mean time between the 
last human action and the time when design pres-
sure is reached has been determined together with 
the main influence factors for this time interval. 
Similar studies have been conducted in the frame 
of the ADAMO project for all categories listed in 
Table 1. One of the key findings of the study is 

Fig. 2 Snapshot of the MCDET EventTreeViewer Dashboard, showing the structure of one of the ADAMO 
DETs and time series information up to the large yellow dot. It allows interactive investigation of a DET, 

inspection of variable changes at each knot of the DET and of the time series development for the observed 
simulation variables till each knot. 
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the identification of the time frame within which 
the check of the PPCS should be conducted to en-
able the direct commission of the RHR. The 
newly developed MCDET EventTreeViewer has 
helped understand counter-intuitive event se-
quences and is an important new tool for result 
processing.  

It can be concluded that machine learn-
ing methods provide an important tool to simplify 
the result processing of an IDPSA but should be 
combined with domain knowledge to assure that 
the results remain meaningful. 
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