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This contribution is a response to the 2025 NASA and DNV challenge on optimization under uncertainty. Three
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1. Introduction

This is a response to the latest installment of a se-
ries of challenges by Crespo et al. (2014), Crespo
and Kenny (2021), and Agrell et al. (2024) that
aim to evaluate the state of the art in uncertainty
quantification for engineering problems.

The significance of uncertainty quantification in
engineering analysis is well established. With an
increase in computational power and the develop-
ment of advanced numerical methods, the demand
for robust mathematical frameworks for uncer-
tainty quantification continuously grows. While
probabilistic methods dominate the field, alterna-
tive approaches under the collective term of im-
precise probabilities have gained traction in recent
years and have shown to provide a more general
treatment of uncertainty in past challenges, e.g. by
Bi et al. (2022) and Gray et al. (2022).

This contribution focuses on the application of
possibility theory, a tool for handling imprecise

probabilities that has recently seen advances in
the theory of inference (Hose et al. (2022), Martin
(2023)), prediction (Mäck and Hanss (2021)) and
optimization (Hose et al. (2019)). A compelling
aspect of the theory is the ability to provide statis-
tically valid confidence distributions without the
need for prior information, even in scenarios of
limited data availability. Its sample-based imple-
mentation is particularly well suited for non-linear
problems and complex relationships between in-
put and output variables, while optimized sam-
pling methods allow for relatively efficient explo-
ration of high-dimensional parameter spaces.

The challenge’s three distinct elements, param-
eter identification, forward uncertainty propaga-
tion, and optimization under uncertainty together
shape the structure of this contribution.

While the presented methodology is tailored to
the challenge at hand, the underlying principles
are expected to be broadly applicable to a wide
range of engineering problems.
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2. The 2025 NASA and DNV Challenge

The following is a brief summary of the challenge
problems. For a full description, see Agrell et al.
(2024) and the supplementary material provided
on the website of the challenge organizersa.

Table 1 categorizes the nine parameters of the
black-box simulation model that forms the central
component of the challenge.

Table 1. Parameters and their ranges.

Parameter Type Value Range

a1, a2 Aleatory [0, 1]
e1, e2, e3 Epistemic [0, 1]
c1, c2, c3 Control [0, 1]

ω Aleatory ∈ N0

The parameters are allocated to the parameter
vector X = [Xa,Xe,Xc] ∈ R

8 and the scalar
seed ω. The system is deterministic in the sense
that for a fixed set of parameters it will always
produce the same response in the form of a multi-
variate time series Y ∈ R

6×60, which consists of
nY = 6 features over 60 time steps.

Problem 1a: Parameter Identification

Given a globally available reference output Yref,1,
consisting of 100 six-dimensional time series, as
shown in Figure 1, the task is to extract infor-
mation about five unknown quantities, i.e., an un-
known probability distribution generating Xa =

[a1, a2] and three fixed but unknown parame-
ters Xe = [e1, e2, e3]. The (baseline) control pa-
rameters X∗

c = [0.533, 0.666, 0.5] for its creation
are known. Registered participants can request up
to ten additional data sets Yref,2...11 of the same
size for arbitrarily selectable control parameters
through a web interface.

Problem 1b: Forward Propagation

Having identified the parameters in Problem 1a,
Problem 1b requires propagating the identified
distributions through the model for the baseline

aavailable in March 2025 at
https://github.com/dnv-opensource/
UQ-Challenge-2025
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Fig. 1. The initial reference Yref,1 ∈ R
6×60×100.

control parameters X∗
c . The prediction intervals

for the confidence levels α = 0.95 and α = 0.999

on each of the six outputs are to be determined.

Problem 2: Optimization Under Uncertainty

Finally, given the identified parameters, the task
is to find three sets of control parameters, each
optimizing a different objective function.

3. Possibility Theory

The posed challenge covers three key aspects
of uncertainty quantification: imprecise param-
eter identification, forward uncertainty propaga-
tion, and optimization under uncertainty. Possi-
bility theory—originally proposed by Dubois and
Prade (1988) and in the flavor recently deepened
by Balch (2020); Hose and Hanss (2021); Hose
(2022); Martin (2023)—remains relatively little
known in this context. Instead of providing a wide
introduction to its facets, which could be argued
necessary for the diverse topics covered in this
challenge, the following outline provides only the
most relevant background. Ample references are
provided for further reading.

3.1. Imprecise Probability Framework

Possibility theory as a framework for the descrip-
tion of imprecise probabilities allows for a more
general representation of uncertainty than clas-
sical probability theory. Instead of assigning a
single probability, possibility theory assigns two
measures, the possibility

Π(A) = sup
x∈A

π(x) (1)
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and the necessity

N(A) = 1−Π(Ā) = 1− sup
x/∈A

π(x) (2)

to an event A, where Ā denotes the complement
of A. The possibility distribution π contains all in-
formation for constructing both measures, serving
as the basic building block for all operations in
possibility theory. Under the condition of normal-
ity, supx∈Ω π(x) = 1, the necessity and possibil-
ity measures bound a so-called credal set of prob-
ability measures of an event A by the consistency
principle N(A) ≤ P(A) ≤ Π(A).

3.2. Possibilistic Calculus

An imprecise variable V is a measurable function
V : Ω → V from a sample space Ω to a value
space V. Unlike in probability theory, where a
precise probability distribution is assigned to V ,
possibility theory describes it via the possibil-
ity distribution πV : V → [0, 1]. The notation
V ∼ πV indicates that the true (potentially un-
known) probability distribution of V is consistent
with πV —meaning that the possibility distribu-
tion bounds a credal set of all possible probability
distributions that could describe V .

Three fundamental operations make up possi-
bilistic calculus: forward propagation, marginal-
ization, and combination of joint distributions.
Forward propagation uses the extension principle

πZ(z) = sup
z=φ(u,v)

πU,V (u, v), (3)

proposed by Zadeh (1975), where a function φ

transforms a—potentially multivariate—input dis-
tribution πU,V of the imprecise variables U and V

into an output distribution πZ of Z by taking
the supremum over all input values mapping to
each z. The marginal

πV (v) = sup
u

πU,V (u, v) (4)

of a multivariate distribution πU,V is the supre-
mum over all other variables. Joint distributions

πU,V (u, v) = J (πU (u), πV (v)) (5)

are calculated using copulas, with the mini-
mum operator serving as the most basic cop-
ula J1(π1, π2) = min(π1, π2). However, Hose

and Hanss (2021) show that the minimum-based
copula does not always preserve consistency
through propagation. For such cases, the copula

J2(π1, . . . , πm) = 1− (1− min
i=1,...,m

πi)
m (6)

is preferrable, as it preserves consistency with
the underlying probability distributions as well as
proving valid for the conjunction of confidence
distributions of independent analyses. Refer to
Hose (2022) for more details on copulas for mod-
eling dependence in possibility theory.

The P-Π-Transform

When given a probabilistic distribution or statisti-
cal model in the form of an empirical probability
density function fP, the P-Π-transform allows for
its representation in possibilistic terms. Baudrit
and Dubois (2006) propose the optimal transform

π(x) = P ({ξ : fP(ξ) ≤ fP(x)}) (7)

for two-sided bounds on the probability distribu-
tion. One-sided bounds can be obtained by the
cumulative transform, see Hose (2022).

3.3. Valid Prior-Free Inference

Possibility theory not only allows for describing
incomplete knowledge about probability distribu-
tions but also provides a framework for statistical
inference about an unknown parameter θ in a
frequentist sense. Central to possibilistic inference
is the principle of validity

P(Cα
π ) ≥ 1− α (8)

with the so-called α-cut Cα
π = {θ : π(θ) ≥ α}.

The resulting structures π(θ), labeled possibilis-
tic confidence distributions by Hose and Hanss
(2021), but also known as inferential models in
Hose et al. (2022) and Martin (2023), and orig-
inally introduced as confidence curves by Birn-
baum (1961), are stacks of nested confidence in-
tervals, where the α-cut of the distribution forms
a confidence interval to the level 1− α.

The approach to possibilistic inference put for-
ward by Hose et al. (2022) begins by defining
a contour or a plausibility function ρ that orders
the parameter space according to the fit of the
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parameter θ to the data. While the likelihood func-
tion serves as a natural choice for this plausibility
function, its selection is arbitrary, merely defin-
ing the shape of the result, not its correctness.
Hose (2022) advocates using engineering-inspired
cost functions as plausibilities. Additionally, the
choice of plausibility function can be used to in-
corporate partial prior information about the pa-
rameters. The plausibility function ρ(θ) is subse-
quently transformed into a possibilistic confidence
distribution π(θ) by solving the integral

π(θ) = P ({ξ : ρ(ξ) ≤ ρ(θ)}) . (9)

Note its similarity to the P-Π-transform in Eq. (7).
Solving strategies are detailed by Hose (2022) and
most recently by Martin (2025).

A modified version of this is the basis for the
parameter identification in this contribution.

3.4. Possibilistic Predictions

Connecting the two presented interpretations of
possibility theory, the prediction of future ob-
servations is a natural extension of the trans-
formed parameter-dependent statistical model
output πY |θ(y) obtained by Eq. (7) on the one
hand and the previously identified confidence dis-
tribution πθ|q(θ) of the parameter θ on the other.
Given an observation q, Hose (2022) proposes the
prediction distribution

πY |q(y) = sup
θ

J (πY |θ(y), πθ|q(θ)) (10)

that describes the next realization y of the statisti-
cal model. For clarity, πY |θ(y) is read as “πY (y)

given θ”. This emphasizes the dependence of the
possibilistic description of Y on θ and the confi-
dence in θ being based on observation q.

3.5. Numerical Strategies

The results in this contribution are mainly based
on two of the three numerical strategies in possi-
bilistic calculus: sampling and optimization, with
interval analysis not being employed.

The main advantage of sampling-based proce-
dures is their ability to handle non-linear prob-
lems. Additionally, unlike probabilistic sampling,
possibilistic sampling does not sample from the
volume (the density) of a distribution, but rather

along its surface—where the information in a
sample is carried by its value rather than its po-
sition relative to other samples. This enables arbi-
trary sampling densities, enabling major compu-
tational savings. Novel strategies employed here
follow ideas from Mäck and Hanss (2021), and
will be published separately. Their main idea is
to carry out an analysis iteratively, tracking a
contribution metric for each sample to the overall
result and adaptively refining the parameter space
in high-impact regions.

Furthermore, particle swarm optimization is re-
peatedly employed, as it is a simple and effective
method for global optimization, integrating well
with sampling-based procedures. See the original
paper by Shi and Eberhart (1998) for an introduc-
tion to the method.

4. Solution Strategy

This section presents the methodology used for
addressing the challenge. Though tailored to this
specific challenge, the principles underlying the
approach are expected to apply to a wide range
of problems. For clarity and conciseness, the
methodology is presented alongside correspond-
ing results, as they are inherently linked.

4.1. Parameter Identification
Representation of Aleatory Variables

The methodology behind Eq. (9) focuses on the
estimation of epistemic parameters. This neces-
sitates quantifying the aleatory parameters us-
ing parametric distributions. Two independent
beta-distributions are chosen for their flexibil-
ity in representing a wide range of shapes
and returning values in the interval [0, 1],
which has motivated their use in previous chal-
lenges (Gray et al., 2022). The aleatory param-
eters Xa = [a1, a2] are modeled with parame-
ters θa = [θ1, θ2, θ3, θ4], expanding the parameter
vector θ = [θa ∈ R

4,θe ∈ R
3] to seven parame-

ters describing the uncertainty about Xa and Xe.

Dimensionality Reduction

To compare model responses on a scalar level, the
output data is reduced to a d-dimensional sub-
space by Principal Component Analysis (PCA),
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which retains as much of its variance as possible.
Given the centered feature-wise responses Yi ∈
R

60×k of k sampled time series, PCA computes
the eigenvectors of the covariance matrix Ci =
1

k−1YiY
T
i . By selecting the d < min(60, k)

eigenvectors corresponding to the largest eigen-
values as columns of the matrix Wi ∈ R

60×d,
the reduced representation

Si = WT
i Yi ∈ R

d×k (11)

is obtained. For the reference data Yref,1, the first
principal component captures more than 98% of
its variance, justifying d = 1 and enabling a one-
dimensional comparison of model responses.

Confidence Distribution via Hypothesis Testing

In the inference approach proposed by Hose et al.
(2022), a candidate parameter’s fit is evaluated
according to the costs of the observations gener-
ated from the statistical model for this parameter
and the reference observation. This approach has
been tailored to scenarios where one observation
is available. In the present challenge, however,
the reference data available consists of 100 time
series. This allows a shift to a more classical statis-
tical setting, where the cost distributions from the
reference and candidate data are compared using
a hypothesis test. The Kolmogorov-Smirnov test
provides a p-value that quantifies the statistical
evidence against the null hypothesis that both cost
distributions are drawn from the same underlying
model. A p-value is the probability of obtaining
a test result at least as extreme as the observa-
tion. This aligns with the confidence value in a
valid possibilistic confidence distribution in Hose
(2022), measuring agreement between candidate
parameter and reference observation. The confi-
dence in a candidate parameter set is then calcu-
lated by the minimum p-value over all outputs:

πθ(θ) = min
i=1,...,nY

P (dKS(Sref,i,Sθ,i)) , (12)

where P(dKS(. . . )) is the Kolmogorov-Smirnov
test statistic’s p-value, and Sref,i and Sθ,i are the
reduced representations of the reference and can-
didate data, respectively. Figure 2 aims at gener-
ating an understanding of this procedure by con-
trasting it to the one put forward in literature.

statistical model for θ in the cost space
reference observation in the cost space
P({ξ : ρ(ξ) ≤ ρ(θ)})

cost cost

empirical
occurrence

empirical
occurrence

π(θ) = π(θ) = P(dKS( , ))

Fig. 2. The comparison of model outputs and obser-
vation in the cost space enables statistically valid infer-
ence. The left panel shows the core idea as presented
in Hose et al. (2022). The right panel illustrates the
approach taken in this contribution.

Fixing the Seed

Using a fixed set of seed values ω ∈ N0
1000 to

generate the candidate data Sθ,i ∈ R
1000 for all

analyses ensures smooth surfaces for all sampling
and optimization schemes, isolating the effects of
variations between target and nuisance parame-
ters. This methodological choice does not impede
the validity of the analysis; while it fixes the
stochasticity of the model outputs, every candidate
parameter is evaluated in 1000 varied model runs,
providing a good representation of the model’s be-
havior, even for low-probability boundary cases.

Inclusion of additional data

In addition to the globallly available reference
data Yref,1, up to ten additional data sets Yref,2...11

can be requested. Details on the selection of the
control parameters for their creation are provided
in Section 4.3.

The inference procedure is carried out for all
reference solutions seperately and subsequently
combined according to Eq. (6) to the final con-
fidence distribution πθ|ref = J2(πθ,1, . . . , πθ,11),
where πθ,j is the confidence distribution obtained
on the basis of the jth reference data set.

The final seven-dimensional confidence distri-
bution is shown in Figure 3. Its subnormality can
be attributed to the approximation of the aleatory
distribution by a beta-distribution and the analysis
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Fig. 3. A full representation of the identified seven-
dimensional confidence distribution πθ|ref. The diag-
onal shows one-dimensional marginals, while the off-
diagonals display pair-wise two-dimensional marginals.

with globally fixed seed values. However, as Hose
(2022) argues, subnormal confidence distributions
do not pose a problem for possibilistic inference.

Extraction of Deliverables

The challenge organizers require submission of a
probability distribution fa satisfying Xa ∼ fa and
a set E complying with Xe ∈ E.

For fa, one of infinitely many consistent prob-
ability densities to the conjunction πa of the
P-Π-transformed joint beta-distribution and the
marginal confidence distribution πθ1,...,θ4 is se-
lected by an algorithmic inversionb of Eq. (7).

For an arbitrarily chosen α = 0.001, the set

E =
{
ξ ∈ [0, 1]3 : πθ5,θ6,θ7(ξ) ≥ 0.001

}
(13)

is approximated using rejection sampling from the
superlevel set of the marginal πθ5,θ6,θ7 .

Figure 4 shows representations of fa and E.

bA valid option is the probability distribution

fa(ξ) =

∫ 1

0

1Cα
πa

(ξ)

m(Cα
πa

)
dα,

with the area m(Cα
πa

) of the α-cut Cα
πa

and the indicator
function 1Cα

πa
indicating membership of the same set. This

option is chosen for comparability to other approaches due to
its alignment with the expected values of the interval-valued
moments of the underlying credal set. Other options include
the upper and lower cumulative distribution functions.

a1 a2

f a

e1 e2

e3

Fig. 4. Probability distribution fa and set E.

4.2. Forward Propagation

The identified parameter distribution propagates
through the model by application of Eq. (10).
The statistical models yi(X

∗
c , α) and yi(X

∗
c , α),

defined in Agrell et al. (2024), bound the response
for the baseline design X∗

c and confidence level α.
They are jointly transformed into the possibilis-
tic description πYi|θ(y) for every feature i =

1, . . . , nY according to Eq. (7). Equation (10) then
eliminates the imprecise parameter θ, yielding
the prediction distributions πYi| ref(y), from which
prediction intervals for arbitrary confidence levels
can be read off, as shown in Figure 5 and Table 2.
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Fig. 5. Possibilistic prediction distributions πYi| ref(y)
for all six features i = 1, . . . , 6.

Table 2. Prediction intervals.

α = 0.95 α = 0.999
i ymin ymax ymin ymax

1,2,3 0.0 3.35 0.0 3.35
4 0.0 2459.1 0.0 3712.4
5 0.0 1225.8 0.0 1755.3
6 0.0 1036.1 0.0 1590.9



421Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

4.3. Optimization

The final part of the challenge is the optimization
of the control parameters with regard to three
different design goals across two performance in-
dicators. The first indicator

Jmin = min
θ∈T

3∑

i=1

60∑

t=1

yi,mean(θ, t) (14)

for the confidence set T = Cα=0.001
πθ|ref

represents
the minimal sum of the responses yi,mean(θ, t),
where each response is averaged across samples k.
This sum is evaluated for the first three features
over all time steps. The confidence level α =

0.001 is chosen in accordance with reliability re-
quirements elsewhere in this challenge. The sec-
ond indicator pofsys is the system failure prob-
ability, i.e. the probability of one of the latter
three features exceeding their critical thresholds
of c4 = 2750, c5 = 2000, and c6 = 1000,
respectively, at any point in time. The necessary
data for both indicators are precalculated during
the inference procedure across all candidate pa-
rameters and ultimately updated according to the
combined confidence πθ|ref.

Three designs are sought, a performance-based
design maximizing Jmin, a reliability-based de-
sign minimizing pofsys, and a constrained per-
formance design maximizing Jmin under the con-
straint of pofsys ≤ ε with ε = 10−3 and ε = 10−4.

Surrogate Modeling and Reference Selection

Evaluating a candidate control parameter set re-
quires a full evaluation of the model for all sam-
ples of πθ|ref, exceeding 100 days of processor
time. This makes optimization on the full uncer-
tainty model computationally infeasible. Instead,
a surrogate model is built on the full evaluations—
representing the complete set of possible param-
eter values—from the inference procedure to in-
terpolate between values in the control parameter
space as inputs and performance indicators as out-
puts. The adopted meta-modeling approach uses
Gaussian Process Regression (GPR) with a radial
basis function kernel. This approach is chosen
for its ability to provide predictions as well as
uncertainty estimates, both of which guide the
selection of subsequent evaluation points. New

points are manually chosen in regions of highest
prediction uncertainty of the GPR model, maxi-
mal predicted Jmin, or minimal predicted pofsys.
The training data for the GPR model and the op-
timized control parameters are shown in Tables 3
and 4. The lowest attainable probability of system
failure is 2.87%, violating both constraints for
the constrained performance design. A design for
ε = 0.05 is provided instead.

Table 3. Training data for the GPR model.

c1 c2 c3 Jmin pofsys

0.533 0.5 0.666 368.4 5.60%
1 0 1 317.5 30.30%
0 0 0 283.9 11.72%
0 1 1 362.0 2.87%
1 1 0 306.2 15.59%

0.8 1 0.8 360.0 13.93%
0.1 1 0.5 366.5 4.03%
0 0.83 0 316.5 9.24%
0 1 0.73 365.4 9.82%
0 1 0.31 357.4 8.70%

0.35 0 0.52 329.8 9.82%

Table 4. Optimized control parameters.

Performance Reliability pofsys ≤ 5%

c1 0.237 0 0.210
c2 0.780 1 0.791
c3 0.573 1 0.539

Jmin 370.8 362.0 365.1
Jmax 486.2 482.6 482.2
pofsys 5.80% 2.87% 5.00%

5. Conclusions

The presented results are—owing to the con-
servative nature of possibility theory—expected
to be among the broadest of all challenge re-
sponses. Further factors driving conservatism are
the dimensionality reduction and the choice of
test statistics. However, within the potential sub-
optimality in undersampled regions and the—
admittedly spirited—choice of beta-distributions
as aleatory marginals, the results are expected to
be robust/valid: any derived set of confidence α
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covers the true parameter value in (1− α) · 100%
of repetitions of this challenge. All results are
available for arbitrary confidence levels, giv-
ing engineers the freedom to balance reliability
against performance requirements in their design.

Numerical solution strategies for possibilistic
calculus continue to evolve, as evidenced by re-
cent developments in Martin (2025). A key theo-
retical challenge remains in developing a general
possibilistic framework for polymorphic parame-
ter identification. Given their ability to character-
ize both credal sets of probabilities and confidence
distributions, possibility distributions suggest a
promising avenue forward.
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