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1. Introduction

The need for accurate and efficient treatment of un-

certainties across many engineering and scientific

disciplines has given rise to a number of computa-

tional frameworks implemented in a variety of pro-

gramming languages. OpenTURNS (C++/Python)
(Baudin et al., 2017), OpenCossan (MATLAB)
(Patelli et al., 2014), UQLab (MATLAB) (Marelli
and Sudret, 2014), UQpy (Python) (Olivier et al.,
2020), andEasyVVUQ (Python) (Wright et al., 2020)
amongst others.

In this paper we present the latest additions to

UncertaintyQuantification.jl (Behrensdorf et al.,
2024), an alternative framework that has been in

development since 2019. This new software is in-

spired by and extends some capabilities of Open-
Cossan. We build upon the knowledge we have
gained throughout the development of OpenCos-
san, while at the same time leveraging the capa-
bilities of the modern, open source, and highly

performant Julia programming language (Bezanson

et al., 2017).

From its inception until today we have constantly

expanded the software with new algorithms and

made some 20 releases. What follows is a non-

exhaustive list of features currently available:

• Simulation-based reliability analysisa
• Local and global sensitivity analysis

aAlso known as rare-event simulation or variance reduction.
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• Third-party solver interface
• High performance computing (Slurm)
• Surrogate modelling
• Bayesian model updating
• Stochastic process modelling
• Imprecise probabilities

This last feature, specifically the propagation of

intervals and probability boxes (the numerical treat-

ment of epistemic uncertainty), is what we believe

sets us apart from other software in the field, and

therefore is the focus of this work. The remainder

of this paper is structured as follows. Section 2

introduces the basic notation for imprecise proba-

bilities and how to define them in the framework,

after which Section 2 discusses the imprecise relia-

bility analysis. Sections 4 and 5 present two family

of algorithms implemented for reliability analysis

with imprecise probabilities. A short introduction

into the high performance computing feature is

provided in Section 7. Section 6 presents a full

numerical example, followed by a conclusion.

2. Imprecise Probabilities

Uncertainty is typically classified into two types:

aleatory and epistemic uncertainty. Aleatory uncer-
tainty, also called irreducible uncertainty, describes

the inherent randomness of a process. Epistemic

uncertainty is the uncertainty resulting from a lack

of knowledge, and thus is sometimes called re-

ducible uncertainty as it can be reduced through

the acquisition of additional data and information.

If both types of uncertainties occur together in

the same variable this is sometimes called hybrid
uncertainty. InUncertaintyQuantification.jl, purely
aleatory uncertainties are represented using the

type. To represent purely epis-

temic uncertainty we provide the type.

Hybrid uncertainties can be expressed as prob-

ability boxes (p-box), which are interval bounded

cumulative distribution functions (CDFs). Consider

two CDFs F and F with F (x) ≤ F (x) for all

x ∈ R. Then, [F (x), F (x)] is a bound on F such

that F (x) ≤ F (x) ≤ F (x) is the set of CDFs. This

set is called the p-box for an imprecisely known

random variableX , where F (x) is the lower bound

for the probability that X is smaller than or equal

to x, and F (x) is the upper bound of this prob-

ability. The simplest way to construct p-boxes is

by passing an to the

constructor. See Code 1 for an example defini-

tion of a Gaussian p-box with imprecise mean and

precise standard deviation. These are known as

parametric p-boxes, as some methods can make

use of their distribution shape information. If only

the outer CDFs are known (perhaps obtained by

non-parametric means), then every possible CDF

between the bounds (irrespective of family) is in-

cluded in the set, which can be called a distribution-

free p-box (Ferson et al., 2015). Figure 1 presents

some examples of typical precise and imprecise

inputs.

3. Imprecise Reliability Analysis

In engineering, the term reliability is used to de-
scribe the ability of a system to perform the function

it was designed for under uncertain or varying con-

ditions. The system’s state is typically identified

using a performance function g(x), with failures
being defined as non-positive values g(x) ≤ 0.

The probability of failure is then defined as the
likelihood of the system being in the failed state.

In the presence of purely aleatory uncertainty this
is given as

pf =

∫
I[g(x)]fX(x)dx, (1)

where fX(x) denotes the joint probability density

function of the inputX and I is an indicator function

defined as

I[g(x)] =

{
0 if g(x) > 0

1 if g(x) ≤ 0.
(2)

However, if epistemic uncertainty is considered
in the input variables it must also be propagated

through the analysis, converting the probability of

failure into an interval itself. The goal of the reliabil-

ity analysis is then to find the lower bound p
f
and

upper bound pf of the probability of failure such

that pf ∈ [p
f
, pf ]. Formally, this can be defined as

p
f
= min

ϑ∈θ

∫
I[g(x)]fX(x, ϑ)dx (3)
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N(0, 1)
B(5, 2) [−2, 2] N([0, 1], 1)

U(0, [0.5, 1])
(N([0.9, 1], [0.2, 0.5])) θ ∈ [0.4, 0.6]

Code 1: Definition of a Gaussian p-box.

and

pf = max
ϑ∈θ

∫
I[g(x)]fX(x, ϑ)dx, (4)

where θ represents the epistemic parameters char-

acterizing the inputs.

The following two sections provide two possible

solutions to this challenging problem.

4. Double-loop Monte Carlo Simulation

The simplest way to solve Equations (3) and (4)

is by double-loop simulation. The name refers to

the need for two loops in comparison to a stan-

dard reliability analysis. The outer-loop essentially

solves two optimisation problems over the parame-

ter space of the epistemic inputs to find the combi-

nations that minimize and maximize the probability

of failure. The inner-loop requires a reliability cal-

culation, with the current combination of parame-

ters under consideration beingmapped to precise in-

puts. In practice, is mapped to a �
while a yields a �

. Therefore, the double-loop simulation

treats p-boxes as parametric. Then, a comprehen-

sive reliability analysis using these purely aleatory
inputs is carried out to solve Eq. (1). This repeated

analysis in the inner-loop makes the double-loop

simulation computationally demanding. If a Monte

Carlo simulation is applied in the inner-loop this is

known as double-loop Monte Carlo simulation.

Special attention must be paid to the type of

optimisation algorithm used, as random sampling

in the inner-loop leads to non-smooth objective

functions. Here we have chosen to apply mesh

adaptive direct search (MADS) algorithms which

are specifically designed for such cases (Abramson

et al., 2009). However, exploration of alternative

methods is part of the ongoing development.

Estimating the probability of failure is effec-

tively separated into two independent problems,

one for each bound. This provides the ability to

apply different types of analyses. For example,

using a larger number of samples for the lower

bound.

As an example, consider the function

f(x1, x2) = x1 + x2, (5)

wherex1 ∈ [−1, 1] is an interval andx2 ∼ N(0, [1, 2])

is distributed as a Gaussian p-box. The associated

performance function is

g(x) = 9 + f(x),

i.e., failures are f(x) ≤ −9. The analytical solution
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to this problem is known to be

p
f
= Φ(−9; 1, 1)

and

pf = Φ(−9;−1, 2),

where Φ(x;μ, σ) is the Gaussian CDF with mean

μ and standard deviation σ. Refer to Code 2 for

how to set up this problem in UncertaintyQuantifi-
cation.jl.
Reliability analysis is exposed through the �

function which takes

four input arguments. The , the performance

function, the input variables and finally the algo-

rithm to use. To apply a double-loop we pass the

inner simulation to be used to the .

For this simple example we apply the first order

reliability method (FORM), as this can reliably

estimate the small failure probability of the lower

bound which is ≈ 7.6e − 24. See Code 3 for the

complete function call. The bounds on the pf can be

obtained from the output interval through

and . The epistemic uncertainty is propa-

gated correctly and matches the analytical solution.

On top of the probability of failure, the double-loop

analysis also returns the parameters that lead to the

lower and upper bound. Here, they are correctly

identified as [1, 1] and [−1, 2].

5. Random Slicing

An alternative method for computing probability

bounds for reliability problems is based on random-

set theory, as outlined by Alvarez et al. (2018). In

this paper (and in software) we colloquially call

this “random slicing”, as will become apparent.

As opposed to double-loop Monte Carlo, random

slicing is a distribution-free or a non-parametric
technique, as it does not make use of distribution

parameters or family. For this reason, it is slightly

more general, but can provide wider probability

intervals in certain simulations.

In random slicing, we make use of the fact that

a p-box is a random-set (Ferson et al., 2015) to

simulate random realisations (random intervals)

from the inverses of the bounding CDFs

Γ(α) = [F
−1

(α), F−1(α)],

where α ∼ U(0, 1) is a sample from a uniform

distribution. This interval can be visualised as a

horizontal cut (or slice) of the p-box at anα ∈ [0, 1].

This interval is then propagated through the model

f or performance function g using an optimiser or

surrogate model,

g(α) = min
x∈Γ(α)

g(x),

g(α) = max
x∈Γ(α)

g(x).

In UncertaintyQuantification.jl the intervals are
also propagated using MADS. In the multivariate

case, we can combine two correlated intervals using

a Cartesian product

[F
−1

X (αX), F−1
X (αX)]× [F

−1

Y (αY ), F
−1
Y (αY )],

where (αX , αY ) ∼ CXY are samples of the copula

between X and Y .

The reliability analysis can be written as thus:

p
f
=

∫
U

I[g(α)]dC, (α) (6)

pf =

∫
U

I[g(α)]dC.(α) (7)

In some sense, the two loops from the double-loop

method have been reversed, where now the outer-

loop handles the random (aleatory) component,

and the inner-loop handles the interval propaga-

tion (epistemic). Describing the analysis this way

essentially gives two separate reliability calcula-

tions, with g and g as the two target performance

functions. Rosenblatt transformations may be used

to associate a standard normal distribution to the

copula C, and one may then use any standard relia-

bility method to compute 6 and 7.

The software implementation is such that this

imprecise reliability method can be coupled to any

simulation method (FORM, line sampling, etc.) in

a straightforward way. As with the double-loop,

one can apply different simulations for each bound

if desired.

The problem setup for random slicing is identical

to that of the double-loop. The only difference is

that a instance is passed instead

of . Code 4 presents the full function

call to solve the example problem presented in
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Code 2: Setup of the example problem. The variable refers to the that is used internally to

store the samples.

↪→

Code 3: Solve the example problem using double-loop Monte Carlo.

the previous section using random slicing. The

lower bound is again estimated using FORM, while

we apply subset simulation to obtain the upper

bound. The result for the lower bound matches the

analytical solution perfectly. The upper bound is

estimated accurately as pf ≈ 3.884325e−5. Note,

that in addition to the probability of failure, random

slicing also returns other outputs of the underlying

simulations, such as the coefficient of variation and

the evaluated samples for potential post-processing.

As outlined by Alvarez et al. (2018), other forms

of random-sets can in principle be evaluated with

thismethod, such as possibility distributions (Dubois

and Prade, 1990) or general Dempster–Shafer struc-

tures (Shafer, 1976). However, careful considera-

tion of multivariate extensions of these structures

must be taken (Schmelzer, 2023). For this reason,

we restrict ourselves to distributions, intervals, and

p-boxes for the time being.

6. Numerical Example

In this section we present how to use Uncertain-
tyQuantification.jl to solve the Front Axle example
given in Yuan et al. (2021). Figure 2 presents the

cross section of an I-beam profile often used for

automobile front axles. The performance function

is given as

g(x) = σs −
√

σ2 + 3τ2, (8)

where σs = 680MPa is the yield stress, maximum

normal stress is σ = M/Wx, and the maximum

shear stress is τ = T/Wρ. Here,M and T are the

bending moment and torque whileWx andWρ are

the section factor and polar section factor. These

last two are equal to

Wx =
a(h− 2t)

3

6h
+

b

6h
[h3 − (h− 2t)

3
] (9)

and

Wρ = 0.8bt2 + 0.4[a3(h− 2t)/t]. (10)

b

ha

t

The input variables are assumed to be indepen-

dent. The mean, standard deviation, and probability

distributions are shown in Table 1. Note that, the

distributions of a, b, t, and h are truncated to be

strictly positive for physical reasons. Code 5 shows

how to define these random variables. The function

is used here to ob-

tain the parameters of the log-normal distributions

for the given mean and standard deviation.
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↪→

Code 4: Solve the example problem using random slicing. Note the increase in samples for the lower

bound.

a t b h M · T ·

In the next step we define the necessary mod-

els. While it is entirely possible to build a single

model we have chosen to split Eq. 8 into smaller

individual models for improved code readability. In

total, we define five instances, as presented

in Code 6.

With the setup now complete we are ready to

run the analysis and compute the probability of

failure. For comparison we obtain two estimates

of the pf with both the double-loop and random

slicing. Internally we apply a standard Monte Carlo

simulation with 106 for the lower bound and 105

samples for the upper bound in the double-loop.

Importance sampling with 4000 samples is used

for both bounds in random slicing. The code to

obtain the solution is presented in Code 7 and the

results are shown in Table 2.

p
f

pf

7. Third party solvers and HPC

This section promotes the fact that the propagation

of imprecise probabilitiesis not restricted to the

simple used throughout this paper, which is

essentially a wrapper around a native Julia function.

Any model provided by UncertaintyQuantifica-

tion.jl can be used and users can potentially imple-
ment their own models which will automatically

possess imprecise capabilities. Most importantly,

the is able to interface with ex-

ternal third party solvers. As such, users have the

ability to perform an imprecise reliability analysis

using a complex finite element model (FEM) in

their preferred solver, such as Abaqus orMOOSE.
Any solver that uses plain text files for input and

output can be connected.

High fidelity models come with a significant

computational demand on their own. However, this

demand is significantly increased when performing

an imprecise analysis, which itself is a challenging

problem, to a point where the time requirements

are no longer feasible. To reduce the required time

one can make use of high performance computing

(HPC) systems, in this case Slurm. This can be done
by configuring a and passing it

to the . For more information and

concrete examples we refer to the online documen-

tation and the demo files included in the software.

8. Conclusion

This paper presents the latest development in Un-
certaintyQuantification.jl, a generalized Julia pack-
age for uncertainty quantification. Most notably we

introduced the new capabilities for performing reli-

ability analyses with imprecise input variables such

as intervals or probability boxes. Two alternative

methods, the standard double-loop and a technique

based on random-set theory have been presented
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↪→

↪→

Code 5: Definition of the random variables for the front axle example.

↪→

Code 6: Definition of the models for the front axle example.

and validated using a simple toy example. Amore

complex real world example was also solved using

the software.

Ongoing development is focused on improving

efficiency of the propagation of imprecise inputs.

The goal is to offer faster alternatives to the cur-

rent application based on MADS. One promising

approach is the combination of Gaussian process

surrogate models with Bayesian optimisation. In

addition, we are working on implementations of ad-

vanced algorithms such as Non-intrusive Imprecise

Stochastic Simulation (NISS) (Wei et al., 2019) and

its extension Collaborative and Adaptive Bayesian

optimisation (CABO) (Hong et al., 2023).

Contributions from other researchers are wel-

come and strongly encouraged.
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