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Railway is constantly gaining importance as a sustainable mode of transportation. Highly automated train operation
is a means to increase the utilization of existing networks. Technical solutions for driverless operation (Grade of
Automation GoA3 and higher) typically rely on Machine Learning (ML) components to evaluate sensor data and
establish situational awareness. Due to the inherent complexity and black-box nature of ML components, traditional
approaches for safety argumentation are not directly applicable to ML-enabled perception systems.
In our paper we present the state of the discussion on this subject and sketch-out potential approaches for technical
solutions and the associated safety argumentation. First we discuss safety goals and objectives of perception systems
for autonomous trains. We then highlight problem areas that prevent the use of traditional methods for arguing
the safety of ML components and propose possible technical solutions and methods at ML component level and
at the level of ML-enabled systems as a whole, taking into account the status of work in ongoing major funded
projects. Finally we discuss strategies for safety argumentation and the role of safety argumentation as a driver for
development decisions.
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1. Introduction

Railways are becoming increasingly important as
a sustainable means of transporting people and
goods (cf. SRU (2017)). Nevertheless, growth in
the sector through the construction of new railway
lines is limited due to the substantial investments
and prolonged planning periods involved. Digital-
ization and automatic train operation (ATO) are
thus moving into focus as approaches to achiev-
ing improvements within the existing rail network
through faster train sequences, more flexible uti-
lization of existing railroad lines and lower oper-
ating costs (cf. Büker et al. (2024)) .

The transition to driverless or unattended train
operation (GoA3 or higher, cf. IEC 62290-1
(2014)) marks a significant milestone to achieve
the aforementioned objectives. In this domain,
technical solutions frequently employ machine
learning (ML) approaches, leveraging methods
such as artificial neural networks to evaluate sen-
sor data. Examples include on-board perception

systems that allow to identify the train’s location
and route and to detect potential dangerous obsta-
cles on the train’s track.

Safety is paramount in the deployment of ML-
enabled ATO solutions. The complexity and un-
predictability of real-world environments necessi-
tate a robust safety argumentation framework to
demonstrate that these systems can operate safely
under diverse permissible conditions. Due to the
inherent complexity and black-box nature of ML
components, traditional approaches for safety ar-
gumentation are applicable to these ML-enabled
solutions only to a very limited extent.

This paper aims to explore safety objectives,
technical solutions and safety argumentation for
ML-enabled systems in autonomous trains, and
to highlight important areas for future research.
It identifies safety goals and objectives for ML-
enabled perception systems (section 3.1), inves-
tigates related technical challenges (section 3.2)
and discusses potential technical solutions (sec-
tion 4) and the associated safety argumentation
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(section 5).

2. Related Work

In this chapter, we highlight work that focuses
on safety objectives for ML-enabled systems for
autonomous trains and the approaches to safety
argumentation in this context, and provide a brief
overview of related standards and guidance from
the railway, automotive, and aviation sectors.

2.1. ML-enabled Systems for Autonomous
Trains

Highly automated driving on mainline railway
routes is the core target of current research in
Europe and elsewhere. Whilst initially, develop-
ment of the required technologies, e.g., for ML-
enabled perception systems, was the core focus
(see, e.g., Ristic-Durrant et al. (2021)), recently
projects also focus on investigating the related
assurance approaches.

Safety objectives for perception systems for
autonomous trains have been the subject of var-
ious analyses in the context of autonomous train
projects and standardization activities, e.g., Ran-
gra et al. (2018); Braband (2021); Braband et al.
(2023); Lahneche et al. (2024). The results of
these analyses are partially diverging, which high-
lights the need for further work, as these safety
objectives set the frame for the safety argumenta-
tion of ML-enabled systems.

Within the framework of the Autonomous Train
program at Railenium, Tonk et al. (2023) have
developed a structured safety assurance methodol-
ogy for autonomous trains that differentiates three
different levels: (1) overall (train) system level,
(2) level of the ML-enabled systems including the
perception system, (3) level of the ML software
component. Various safety-related engineering ac-
tivities and technical approaches are described ac-
cording to these levels.

In the safe.trAIn project, a safety-enabling ar-
chitecture, metrics for the performance assess-
ment of AI-enabled systems, and assurance ap-
proaches have been developed (Zeller et al.
(2023)). The project’s safety argumentation strat-
egy is built on five pillars: (1) processes tailored to
the perception specifics, (2) non-conventional re-

dundancies in the safety-enabling architecture, (3)
sufficient understanding of the causalities of func-
tional behavior, (4) testing with real and simulated
data, and (5) safety monitoring during operation,
employing methods like out-of-distribution detec-
tion. The safety argumentation strategy is guided
by a ”landscape of AI concerns” developed in the
project (Schnitzer et al. (2024)), which is also used
to derive verifiable requirements and performance
measures used to demonstrate the adequacy of
ML-based solution elements.

2.2. Standards and Guidelines

Standards and guidelines also provide valuable
insight on the challenges in utilizing ML-enabled
systems for highly automated vehicle operation as
well as guidance on technical solutions and safety
argumentation.

Railway: In the railway sector, the certification
framework is still strongly focused on ”classical”,
procedural forms of computation (cf. Jenn et al.
(2020)). Some standards such as EN 50716 (2023)
do mention Artificial Intelligence technologies,
but do not yet provide guidance on the precondi-
tions and limits of their application nor on their
implementation and certification.

Other domains, such as automotive and avia-
tion, are more advanced regarding the formaliza-
tion of safety assurance and certification aspects.
Adaptation of these approaches into the safety
culture of the railway domain is to be expected in
the coming years.

Automotive: ISO/PAS 8800 (2024) ’Road vehi-
cles — Safety and artificial intelligence’ addresses
the risk of unintended safety-related behavior at
vehicle level due to output insufficiencies, sys-
tematic errors, and random hardware errors of AI
elements, thereby adding additional aspects com-
plementing the existing automotive safety stan-
dards ISO 26262 (2018) and ISO 21448 (2022)
for electric/electronic in-vehicle systems.

The most recent version of the ASPICE frame-
work (Automotive SPICE 4.0 (2023)) adds a new
group of machine learning engineering (MLE)
processes to augment the pre-existing system en-
gineering, software engineering, and hardware en-
gineering process groups.
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Aviation: In the aviation domain, the ED-324
(202x) ’Process Standard for Development and
Certification/Approval of Aeronautical Safety-
Related Products Implementing AI’ was planned
to be published end of 2024 as ED-324 / SAE ARP
6983a, but has not been released yet.

As an alternative to certification based on ful-
filling the detailed objectives of a prescriptive
standard, the overarching properties framework
Holloway (2019) has been proposed. Under this
framework, a set of safety arguments proves that
the system possesses the three overarching prop-
erties (or meta objectives) ’intent’, ’correctness’,
and ’innocuity’.

The analysis of related work indicates that,
while the railway domain yet lacks comprehensive
guidance regarding the safety argumentation for
ML-based systems, required elements and par-
tial approaches have been developed and demon-
strated, and that guidance is available from other
domains which may potentially be transferred and
adapted for application in the railway sector.

3. Application Context: Perception

To achieve the goal of Grade of Automation
(GoA) 3 or higher, all driver tasks must be taken
over by on-board automation systems. One of the
core functions to be realized by these systems is
to monitor the track for obstacles and to derive ap-
propriate action depending on the type of obstacle.
The detection and classification tasks are difficult
to formalize and thus lend themselves to the use of
artificial intelligence – primarily machine learning
(ML) – technologies.

In this paper, we focus on such ML-enabled
perception systems and the technical and assur-
ance approaches guaranteeing and demonstrating
their safety.

3.1. Safety Goals and Safety Objectives

Typical safety goals for ML-enabled systems for
autonomous trains include (cf. Braband et al.
(2023)):

acf. https://eurocae.net/about-us/working-groups/ (accessed
2025-01-05)

• Potentially dangerous objects in the
train’s standard clearance envelope shall
be recognized.

• Persons who unintentionally appear in
the in the train’s standard clearance en-
velope or in the suction area of the train
shall be recognized.

• Unjustified emergency braking shall be
avoided.

For these safety goals, risk acceptance criteria
must be identified according to CSM (EU (2013)),
following three primary methods:

Use of code of practice: This method focuses
on the application of universally accepted rule
sets, such as safety norms. Currently, there are no
universal rule sets available for safety-critical ML-
enabled systems, neither in the railway domain
nor in other industries. However, some selected
rules from the railway domain could be applicable
in combination with the ”explicit risk estimation”
method.

Explicit risk estimation: In this method, for
each of the basic system functions, qualitative
and quantitative safety criteria are derived in a
detailed analysis (Braband (2021)), also using in-
formation on the severity and frequency of events.
Braband et al. (2023) have established detailed
safety integrity objectives for selected automated
driving functions, ranging from SIL1 to SIL3 in
exceptional cases. Based on additional consider-
ations extending this work, the safe.trAIn project
considers 1% probability of failure on demand as
an appropriate safety objective.

Use of similar systems as a reference: This
method uses similar systems, which are proven
in use in a comparable operating environment, as
a reference, assuming that a system fulfilling the
same safety objectives would be acceptably safe.
Unfortunately, existing driverless metro systems
are not sufficiently comparable since they operate
in a protected environment, such that only selected
safety objectives can be taken over.

Using a human train driver as a reference sys-
tem is an approach currently discussed in indus-
try, but the quantification of train driver perfor-
mance is difficult and subject of ongoing research.
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Simplistic approaches lead to the assumption of
10-3/hr human error probability, which – applied
to perception systems – would lead to compar-
atively high safety objectives. On the contrary,
recent studies have shown that train drivers have
only limited chances for timely obstacles detec-
tion and appropriate reaction, such that even in
good visibility conditions only 30% of collisions
can be avoided (Lahneche et al. (2024)). This
strongly suggests the need to revisit the approach
considering human driver performance as refer-
ence system. One potential input for such recon-
sideration could be the work currently performed
temporary standards working group in Germany
on DIN SPEC 91516 ’Human performance with
regard to the dynamic driving task for the specifi-
cation of AI for ATO’.

3.2. Technical Challenges

Using ML-enabled systems in safety-critical ap-
plications poses a multitude of challenges regard-
ing suitable technical solutions and the demon-
stration of their adequacy (Pereira and Thomas
(2020); Jenn et al. (2020); Perez-Cerrolaza et al.
(2024)).

One group of challenges arises from the fact
that AI-enabled systems are primarily applied
for ”non-algorithmic” computational tasks. Such
tasks are often defined in an implicit way, e.g., by
ML training data, potentially leading to ambiguity,
bias, and lack of completeness in the definition of
the task.

Another group of challenges arises from the
black-box nature of ML components. Their be-
havior results from a combination of algorithm
and parametrization, where most of the behav-
ior specifics are the result of the parametrization.
Lack of explainability and robustness are two
challenges often mentioned in this context.

Comparing with traditional approaches for the
development and the certification of software-
based systems, Dmitriev et al. (2021) differentiate
the following issues when using ML technology
for safety-critical applications:

Traceability Issue: Conventional software is
implemented as human-readable source code,
which can be traced back to the specific require-

ments it implements. In comparison, the func-
tional behavior of an ML component is primarily
characterized by a multitude of model parame-
ters, which are calibrated during the training of
the model. Due to the fact that an ML model is
generally not directly comprehensible by humans,
it is practically impossible to trace the values of
these model parameters to specific low-level re-
quirements or functions implemented by the ML
model (Dmitriev et al. (2021)). As a result, the re-
lated traceability objectives of the safety standards
cannot be achieved.

Coverage Issue: To assess completeness of
software testing, software-related safety standards
such as EN 50716 (2023), ISO 26262 (2018) or
DO-178C (2011) usually require an assessment
of (1) requirements coverage and (2) structural
coverage of the source code achieved by the avail-
able tests. The first criterion evaluates the extent
to which the created tests exercise the intended
behavior stipulated by the software requirements.
Due to the traceability issue explained above, test
coverage of the requirements implicitly expressed
by the ML model cannot be demonstrated.

The second criterion assists in identifying
source code elements that are not covered by
requirements-based tests. These elements may
indicate unintended functionality in the source
code or deficiencies in the requirements or tests
(Dmitriev et al. (2021)). The established metrics
for structural code coverage are not well suited
for a typical ML model implementation, which
has a very simple control flow. Here, a single ran-
domly selected test input can achieve a high level
of code coverage, thereby rendering this criterion
ineffective for ML models. As a result, additional
activities will be necessary to detect unintended
functionality in the source code and to achieve
confidence in the correctness and completeness
of the requirements-based tests (Dmitriev et al.
(2021)).

Verification Issue: If an ML model expresses
software requirements, the verification objectives
of the safety standard for such requirements apply.
As an ML model is generally not directly com-
prehensible by humans, traditional human reviews
to assess aspects such as accuracy, consistency,
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and traceability are very restricted or impossible.
However, testing of the ML model with test data
sets can be claimed to support some of the veri-
fication objectives (Dmitriev et al. (2021)). Con-
sequently, the verification objectives of traditional
software safety standards are at least partially
achievable.

4. Solution Approaches

4.1. ML Component Level

Addressing the traceability, coverage, and verifi-
cation issues identified by Dmitriev et al. (2021)
for individual ML components is one step towards
ensuring and demonstrating the safety of ML-
enabled systems.

Traceability issue: One part of the high-level
requirements defines rather generic functional and
safety requirements for the ML component. These
requirements translate into low-level requirements
for the computing platform and for the algorith-
mic realization of the ML component, and can
be traced and verified with methods compliant to
traditional railway safety standards such as EN
50716 (2023).

The majority of high-level requirements de-
scribe the perception tasks, with the definition
of the operational design domain (ODD) as an
important element. These perception-specific re-
quirements are not refined into traditional low-
level requirements, but rather implicitly docu-
mented in the data sets used to train and verify
the ML component.

Schleiss et al. (2022) have introduced the
concept of micro operational design domains
(μODD). Defining the ODD as a collection of
μODD in a very detailed way enables a re-
finement of perception-related high-level require-
ments into a set of intermediate-level require-
ments which can be individually addressed and
verified. Verification includes confirming that the
individual μODD are properly represented in
the training data, and that the solution performs
properly for the respective μODD. Introducing
intermediate-level requirements for the individual
μODDs partially bridges the semantic gap be-
tween the perception-related high-level require-
ments and the ML model expressing the software

requirements. As a result, the scope of the trace-
ability issue will be reduced. In addition, μODDs
also target the (requirements) coverage issue, and
the verification issue (see below).

Driving this concept one step further, the re-
quired behavior for each μODD could be specified
explicitly, and could be illustrated with represen-
tative examples of input-out data for the ML com-
ponent. Applying XAI methods, those elements of
the ML component can be identified that actively
contribute to the fulfillment of the requirement.
In this way, traceability from low-level require-
ments to elements of the ML component could be
established, thereby at least partially solving the
traceability issue for low-level perception related
requirements.

Coverage issue: The concept would also en-
able to establish sets of test cases required to
demonstrate correct behavior of the ML compo-
nent for each of the μODD. This would adequately
address the requirements coverage criterion of the
coverage issue.

However, the structural coverage criterion
would not be addressable in this way, since cur-
rently there is no universally accepted approach to
assess the structural coverage of an ML compo-
nent as a means for quality assurance (Dong et al.
(2020); Wang et al. (2024)).

Verification issue: The concept of low-level
requirements associated to μODD would also al-
low to perform detailed tests, thereby establishing
confidence that the ML component is adequately
performing for these μODD.

These measures addressing traceability, cover-
age and verification at ML component level ap-
plied in combination with additional assurance
measures safeguarding, e.g., the quality of training
data with respect to representativity and absence
of bias, have the potential to ensure and demon-
strate a certain level of safety integrity for ML
components. Depending on the chosen measures
and the level of rigor applied, this level might be
similar to ”quality managed (QM)” (ISO 26262
(2018)) or ”basic integrity” (EN 50716 (2023)),
or might already achieve an initial level of safety
integrity.
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4.2. Architecture Level

For most safety-critical applications, the lower
levels of safety integrity that are achievable for
individual ML components are not sufficient. To
address these applications, ML-enabled systems
must additionally use architectural measures to
handle capability insufficiency of individual ML
components and to compensate residual errors.
Such measures include among others:

• Combination of ML components and
conventional components (doer-checker
pairs or groups of complementary ML
and algorithmic components),

• Parallel dissimilar ML components and
voting and/or result merging,

• ML component monitoring during oper-
ation (e.g., out-of-distribution checking),

• Plausibility checking with dissimilar in-
formation (maps, GNSS, odometry).

• Extensive virtual testing based on syn-
thetic fuzzing (Miller et al. (1990)) of
existing test scenarios.

Relevant standards such as ISO/PAS 8800
(2024) provide generic guidance for the devel-
opment of architectures for ML-enabled systems
in safety-critical applications. Yet, these architec-
tures must be developed in light of the specific
challenges of the concrete application, taking into
account hazards arising from external sources and
failure modes of the components forming the ML-
enabled system.

Systematic exploration of the possible archi-
tecture design space, including possible architec-
tural variability patterns and variability aspects of
system components, is key to eventually define
an adequate architectural solution for the specific
safety-critical application. Product-line engineer-
ing methods combined with methods for assessing
the safety characteristics of the defined architec-
ture variants help to perform this potentially large
exploration task in an efficient manner (Thomas
and Jaß (2024)).

5. Safety Argumentation

The solution approaches discussed in section 4 are
building blocks for ensuring the safety of ML-

enabled systems for highly automated driving in
railway. Each of the approaches influences aspects
relevant for the safety argumentation at overall
system level. In order to eventually define an opti-
mal system solution it is advisable to develop the
safety case in parallel and to make development
decisions using the safety case as guiding infor-
mation.

However, most safety-related aspects of a po-
tential ML-enabled system are associated with
uncertainty. Many arguments in the safety case
are not black-and-white statements, but should
rather be considered taking into account the re-
lated uncertainties. Approaches to structure and
understand, quantify and explicitly manage uncer-
tainties have been described, e.g., by Burton and
Herd (2023) and Idmessaoud et al. (2024).

The explicit management of uncertainties re-
lated to the safety argumentation follows two
objectives: (1) Uncertainty management helps to
establish and weight the confidence that can be
placed in the combined safety argumentation for
the ML-enabled system, thereby supporting the
judgment if the realized system behaves ade-
quately safe in its intended usage context. (2)
Uncertainty management may be used to drive
development decisions at various levels, includ-
ing product-oriented choices like the selection of
optimal architectural variants, component charac-
teristics and algorithms, but also process-oriented
choices like the selection of testing approaches
and decisions about additional process assurance
measures.

6. Summary

In this paper we summarize the state of discus-
sion regarding the safety argumentation for ML-
enabled systems for autonomous trains and high-
light topics that are essential for further develop-
ment of the field.

For highly automated driving in railway, the
safety objectives to be fulfilled are the driving ele-
ment that define the technical approaches and the
development methods to be applied. Yet, the dis-
cussion is continuing regarding the use of human
train drivers (and their perception and reaction ca-
pabilities) as reference model and the appropriate
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consideration of obstacle frequency data. These
aspects might lead - if sufficiently substantiated by
appropriate data and accepted by authorities and
public - to substantially reduced safety objectives
for perception systems, making it more viable to
provide adequate technical solutions.

Regarding the solutions for ML-enabled per-
ception systems, we differentiate between the core
ML components and ML-enabled perception sys-
tems as a whole. For ML components, the trace-
ability, coverage, and verification issues high-
lighted by Dmitriev et al. (2021) must be solved.
This is at least partially possible by applying the
μODD approach as a means to define, trace and
verify low-level requirements for the perception
task. Remaining functional deficiencies and resid-
ual errors of individual ML components must be
mastered through appropriate measures at archi-
tectural level. This requires to systematically ex-
plore the architectural design space and to eval-
uate architecture variants regarding their compli-
ance with the defined safety objectives.

The intended safety argumentation should be
a driving factor during development, influencing
development decisions and thereby making sure
that the final solution is optimally fulfilling the
safety objectives. To achieve this, the safety case
must be created in parallel to the development
activities. Assurance uncertainties related to in-
dividual arguments should be explicitly managed
and should be taken into account when making de-
velopment decisions based on the intended safety
argumentation.
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Sûreté de Fonctionnement.

Ristic-Durrant, D., M. Franke, and K. Michels
(2021). A review of vision-based on-board
obstacle detection and distance estimation in
railways. Sensors 21(10), 3452.

Schleiss, P., Y. Hagiwara, I. Kurzidem, and
F. Carella (2022). Towards the quantitative
verification of deep learning for safe percep-
tion. In 2022 IEEE International Symposium
on Software Reliability Engineering Workshops
(ISSREW), pp. 208–215.

Schnitzer, R., A. Hapfelmeier, S. Gaube, and
S. Zillner (2024). AI Hazard Management:
A Framework for the Systematic Management
of Root Causes for AI Risks, pp. 359–375.
Springer Nature Singapore.

SRU (2017). Time to take a turn: Climate action in
the transport sector. Technical report, German
Advisory Council on the Environment (SRU).

Thomas, C. and P. Jaß (2024). Product line en-
gineering applied to perception system archi-
tectures for autonomous trains. In 2024 IEEE
International Conference on Recent Advances
in Systems Science and Engineering, pp. 1–9.

Tonk, A., M. Chelouati, A. Boussif, J. Beu-
gin, and M. E. Koursi (2023). A safety as-
surance methodology for autonomous trains.
Transportation Research Procedia 72, 3016–
3023. TRA Lisbon 2022 Conference Proceed-
ings Transport Research Arena (TRA Lisbon
2022),14th-17th November 2022, Lisboa, Por-
tugal.

Wang, Z., S. Xu, L. Fan, X. Cai, L. Li, and Z. Liu
(2024). Can coverage criteria guide failure
discovery for image classifiers? an empirical
study. ACM Trans. Softw. Eng. Methodol. 33(7).

Zeller, M., T. Waschulzik, M. Rothfelder, and
C. Klein (2023). Safety assurance of a driver-
less regional train – Insight in the safe.trAIn
project. In 2023 IEEE 34th International
Symposium on Software Reliability Engineer-
ing Workshops (ISSREW), pp. 41–42.


