
Proceedings of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Edited by Eirik Bjorheim Abrahamsen, Terje Aven, Frederic Bouder, Roger Flage, Marja Ylönen

©2025 ESREL SRA-E 2025 Organizers. Published by Research Publishing, Singapore.

doi: 10.3850/978-981-94-3281-3_ESREL-SRA-E2025-P2930-cd

Bayesian Uncertainty Modeling and Risk-Aware Optimization for Unknown Systems

Premjit Saha
Department of Mechanical and Aerospace Engineering, University at Buffalo, USA.
E-mail: premjits@buffalo.edu

Karan Baker
Department of Mechanical and Industrial Engineering, Louisiana State University, USA.
E-mail: kbake54@lsu.edu

Adrian Stein
Department of Mechanical and Industrial Engineering, Louisiana State University, USA.
E-mail: astein@lsu.edu (corresponding author)

This study explores uncertainty classification and modeling, differentiating between aleatory and epistemic un-
certainties. Aleatory uncertainty arises from inherent randomness and is commonly represented using random
variables, while epistemic uncertainty stems from a lack of precise knowledge about a parameter’s true value.
Addressing both types is crucial for constructing accurate uncertainty models, which must account for the physical
nature of parameters and the available data. The research is motivated by the NASA and DNV 2025 challenge
on optimization under uncertainty. To estimate probability densities for both uncertainty types, the study employs
Bayesian Inference, which provides a structured approach to updating beliefs about uncertain parameters as new data
becomes available. In the design optimization phase, the study utilizes the Shapley value concept to systematically
address the subproblems. By fairly evaluating the contribution of each variable before the optimization process, this
method enhances resource allocation and decision-making. The derived control inputs are optimized to meet various
task-specific objectives, ensuring robust performance.
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1. Introduction

Uncertainty quantification (UQ) plays a crucial
role in engineering and scientific disciplines, par-
ticularly when dealing with complex physical sys-
tems. Such systems often involve uncertainties
arising from inherent randomness (aleatory uncer-
tainty) and limited knowledge about model pa-
rameters (epistemic uncertainty). In safety-critical
applications, accurately quantifying these uncer-
tainties is essential to ensure reliability and robust
performance. However, real-world constraints of-
ten limit direct observation of system inputs,
making it challenging to characterize their dis-
tributions Argell (2025). The framework of the
challenge considers a physical system described
by an input vector partitioned into aleatory vari-
ables (Xa), epistemic variables (Xe), and control
variables (Xc). Participants are provided with a

computational model capable of generating mul-
tivariate time-series responses for specified in-
puts and random seed parameters. By leveraging
both simulated responses from this computational
model and limited experimental data from a Sim-
ulation Trust Center (STC), participants aim to
approximate the unknown distribution of aleatory
variables. The ultimate goal is to develop ro-
bust methods for uncertainty quantification that
generalize effectively across various engineering
contexts, enhancing decision-making processes
in design optimization under uncertainty Argell
(2025). In many engineering and scientific appli-
cations, system inputs X are not directly observ-
able, and we can only access the system response
Y through experiments or simulations. The input
space is standardized such that X ∈ [0, 1]nx , with
nx ≈ 10. Given that the true input distribution is
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unknown, our goal is to estimate the probability
density functions (PDFs) fa(Xa) of the aleatory
variables Xa and the tightest intervals for epis-
temic variables containing their exact (but un-
known) values by leveraging observed responses
Y.

2. Problem Formulation and Solution

The challenge comprises two distinct but inter-
connected problems. The first problem focuses on
quantifying uncertainty in the input vector X by
integrating simulation outputs from the compu-
tational model with experimental data from the
physical system. The second problem addresses
the optimization of control parameters for the sys-
tem, explicitly considering uncertainty to achieve
a balance between performance and associated
risk of failure.

2.1. Problem 1: Uncertainty Quantification

Initially, we propose a hierarchical model that
captures the conditional relationship between the
observed output data and various uncertain param-
eters, including both aleatory and epistemic uncer-
tainties. To complete the Bayesian specification,
we assign informed priors and hyperpriors to these
parameters based on available domain knowledge
and expert judgment Bozorgzadeh et al. (2023).
The hierarchical model aims to capture the un-
certainty and variability inherent in both the in-
put vector X and the system response Y Sedehi,
Hamed and Eftekhar, Saeed and Papadimitriou,
Costas (2019). The following is the mathematical
formulation of the hierarchical model.

2.1.1. Model Formulation

The joint distribution of all variables in the hierar-
chical model is given as:

P (Y,μ,Ω,Xa,Xe) = P (Y | μ,Ω)

P (μ | μ0,Ω0)P (Ω | R, ν)P (Xa)P (Xe), (1)

where: P (Y | μ,Ω): Likelihood of the data.
P (μ | μ0,Ω0): Prior for the mean vector.
P (Ω | R, ν): Prior for the precision matrix.
P (Xa): Priors for aleatory uncertainty parame-
ters. P (Xe): Priors for epistemic uncertainty pa-
rameters. Data Likelihood: The observed response

Yi = [y1 y2 y3 . . . y6]
T for each observa-

tion i follows a multivariate normal distribution:
Yi ∼ N (μ,Ω−1), where μ is the mean vector
and Ω is the precision matrix (inverse of the co-
variance matrix) Hoff (2009). Prior for Mean Vec-
tor: The mean vector μ is modeled as a multivari-
ate normal distribution: μ ∼ N (μ0,Ω

−1), μ ∈
R

6×1 where μ0 is the prior mean and μ0 = Y,
where Y =

∑K
i=1 Yi/K. Prior for Precision

Matrix: The precision matrix Ω follows a Wishart
distribution Koop and Korobilis (2010), Uhlig
(1994): Ω ∼ W(R, ν), where R is called the
scale matrix and ν is the degrees of freedom. This
choice ensures that the precision matrix remains
positive definite. Covariance Matrix: The covari-
ance matrix Σ is defined as the inverse of the
precision matrix: Σ = Ω−1, both Ω,Σ ∈ R

6×6.

2.1.2. Aleatory Uncertainty

Aleatory uncertainty is captured using beta distri-
butions Stafford (2020) for parameters Xa,1 and
Xa,2, which represent probabilities:

Xa,1 ∼ Beta(α1, β1) (2a)

a1 ∼ U(0, 1), α1 = 1/a1 (2b)

b1 ∼ U(0, 1), β1 = 1/b1. (2c)

Similarly, for Xa2:

Xa,2 ∼ Beta(α2, β2) (3a)

a2 ∼ U(0, 1), α2 = 1/a2 (3b)

b2 ∼ U(0, 1), β2 = 1/b2. (3c)

2.1.3. Epistemic Uncertainty

Epistemic uncertainty is modeled using normal
distributions for parameters Xe,1, Xe,2, and Xe,3:

Xe,1 ∼ N(μe1 , 1/σe1) (4a)

μe1 ∼ U(0, 1), σe1 ∼ Γ(a0, b0). (4b)

Similarly, for Xe,2:

Xe,2 ∼ N(μe2 , 1/σe2) (5a)

μe2 ∼ U(0, 1), σe2 ∼ Γ(a0, b0). (5b)

and Xe,3:

Xe,3 ∼ N(μe3 , 1/σe3) (6a)

μe3 ∼ U(0, 1), σe3 ∼ Γ(a0, b0). (6b)
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The distributions Beta(·, ·), U(·, ·), and Γ(·, ·)
represent the Beta, Uniform, and Gamma distri-
butions, respectively. Here, α and β are the shape
parameters of the Beta distribution; U(a, b) de-
notes a Uniform distribution with lower and up-
per bounds a and b, respectively; and a0 and b0
are the shape and rate parameters of the Gamma
distribution.

2.1.4. Insights and Motivation for the
Hierarchical Model

We selected the multivariate normal distribution
for two key reasons: When numerous small, in-
dependent effects combine, their aggregate tends
toward a normal distribution. This property ex-
tends to the multivariate case via the central limit
theorem, making the normal assumption natural
for complex systems with additive uncertainties.
Given constraints on mean μ and covariance Σ,
the multivariate normal distribution maximizes
entropy. This makes it the least biased choice
when only these moments are known, avoid-
ing unwarranted assumptions about higher-order
structure Uhlig (1994). Since each epistemic pa-
rameter has an underlying true value within the
interval [0, 1], our objective is to construct a prior
distribution that is highly concentrated around this
value. Effectively, we aim for the prior to resemble
a Gaussian distribution with an extremely small
variance—approaching an impulse function with
a very narrow base. By choosing identical shape
parameters (a0 = 10−1) and rate parameters
(b0 = 10), which are necessary for defining a
Gamma distribution for each epistemic parameter,
we uniformly control the variance across all of
them. As long as the variance of each epistemic
parameter remains small, we are satisfied with
the model. We found no need to introduce addi-
tional uncertainty or an extra hierarchical layer
that would unnecessarily complicate the system.
Finally, we have chosen the Beta distribution for
aleatory parameters since it is bounded within the
interval Xa ∈ [0, 1]. We ensure that the Beta
distribution remains bounded by choosing both
shape parameters, α and β, such that α ≥ 1 and
β ≥ 1.

2.1.5. Summary of the Xc Sample Points

Next, the observed output dataset derived from
both the true system and computational model will
be utilized to construct the uncertainty model, re-
ferred to as UM1 Argell (2025). The control vari-
ables Xc are defined within a three-dimensional
unit cube, i.e., Xc ∈ [0, 1]3. Due to computational
constraints, only 10 sample points for Xc are se-
lected. These points are chosen along two distinct
straight lines within the unit cube, each defined by
parametric equations as follows:

Line 1: [x, y, z] = [t, t, t], t ∈ [0, 1] (7a)

Line 2: [x, y, z] = [1− t, t, t], t ∈ [0, 1] (7b)

Table 1.: Points for Xc from STC simulation.

t Xc(x, y, z)Line 1 Xc(x, y, z)Line 2

0 [0.00, 0.00, 0.00] [1.00, 0.00, 0.00]

0.25 [0.25, 0.25, 0.25] [0.75, 0.25, 0.25]

0.50 [0.50, 0.50, 0.50] [0.50, 0.50, 0.50]

0.75 [0.75, 0.75, 0.75] [0.25, 0.75, 0.75]

1 [1.00, 1.00, 1.00] [0.00, 1.00, 1.00]

Diagonal sampling is advantageous under strict
computational budgets (e.g., 10 samples) due to its
deterministic nature, reproducibility, and explicit
targeting of extreme hypercube corners. However,
it lacks uniform dimensional coverage. When re-
sources permit, Latin Hypercube Sampling re-
mains a better choice for comprehensive multi-
dimensional modeling.

2.1.6. Results

The multidimensional time series output data was
generated both locally through simulation and re-
motely from STC. Initially, for each baseline set
of control parameters (Table 1), we generated 100
i.i.d. multivariate time series datasets from STC.
Each dataset comprises 6 outputs sampled at 60
temporal points across t ∈ [0, 1]. These datasets,
derived from specific Xc parameter values, were
then used to construct a hierarchical Bayesian
model following the rjags R package method-
ology. The Markov Chain Monte Carlo (MCMC)
procedure is employed to robustly explore the
posterior distribution of both aleatory and epis-
temic parameters. Each chain undergoes a burn-
in phase consisting of 2, 000 iterations, ensuring
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convergence to the target posterior distribution.
Subsequently, posterior sampling is performed for
10, 000 iterations per chain using statistical pack-
ages available in R. Each MCMC chain, generated
from data derived from STC for a selected base-
line Xc, demonstrates strong convergence diag-
nostics after burn-in, particularly according to the
method developed by Adrian Raftery and Steven
Lewis Gottardo and Raftery (2008),Gilks et al.
(1998). Subsequently, a set of 10 MCMC chains
is constructed for each aleatory and epistemic pa-
rameter, and their corresponding posterior PDFs
are estimated. Table 2 contains statistical sum-
maries for each aleatory and epistemic parameter.

Table 2.: Statistical summary of posterior PDFs
for uncertain parameters.

parameters mean standard Quantile values
deviation 2.5% 97.5%

Xa,1 0.496705 0.303231 0.01665 0.98223

Xa,2 0.497828 0.304109 0.01688 0.98430

Xe,1 0.515389 0.102518 0.3486 0.6818

Xe,2 0.52714 0.10099 0.3637 0.6927

Xe,3 0.52460 0.11704 0.3348 0.7138

Fig. 1 displays the posterior PDFs obtained from
the stationary distributions of multiple MCMC
chains corresponding to each uncertain parame-
ter and it also illustrates a significant reduction
in the width of the support for all three epis-
temic parameters compared to the initial support
set provided. This reduction results in a narrow
interval, represented as a PDF, which provides
a more precise estimate of the unknown true
values for each of these parameters. Fig. 2 dis-
plays the posterior PDFs derived from stationary
distributions of MCMC chains, generated during
the Uncertainty Quantification Model 2 (UM2)
calibration process. These PDFs were computed
using the highest-density 95% subset of the data,
a statistically robust approach that prioritizes the
most informative observations. This methodology
constitutes a key deliverable of subproblem 1.2,
as formally defined in Argell (2025). Moreover,
Table 3 provides quantitative counterparts through
statistical summaries for both Xa and Xe pa-
rameters under this constrained data regime. Sub-
problem 1.2 requires minor adjustments in the
hierarchical model for both aleatory and epistemic

parameters. For instance, the revised distribution
for Xa,1 becomes:

Xa,1 = zl + (zu − zl)z, z ∼ Beta(α1, β1) (8a)

a1 ∼ U(0, 1), α1 = 1/a1 (8b)

b1 ∼ U(0, 1), β1 = 1/b1. (8c)

Here, zl and zu denote the lower and upper bounds
(2.5% and 97.5% quantiles from Table 2) con-
straining Xa,1. Analogous modifications apply to
Xa,2. For epistemic parameters, Xe,1 is redefined
as:

Xe,1 ∼ N(μe1 , 1/σe1) (9a)

μe1 ∼ U(m0, n0), σe1 ∼ Γ(a0, b0). (9b)

with m0 and n0 similarly derived from Table 2.
Identical adjustments apply to Xe,2 and Xe,3.

Table 4 summarizes the estimated prediction
interval bounds g1 (minimum acceptable bound)
and g2 (maximum tolerable limit) for each out-
put state, computed across the full parameter
space of the Xc dataset. Here, α represents the
chosen confidence level, and y1, y2, y3 . . . y6 de-
note the output variables conditioned on Xc pa-
rameters. These bounds are formally defined as
g1 = inf{f1} and g2 = sup{f2}, which are

f1 = u | max
Xe∈E

pu(Xe,Xc, u) ≤ 1− α (10a)

f2 = l | max
Xe∈E

pl(Xe,Xc, l) ≤ 1− α. (10b)

The numerical framework for subproblem 1.3
was constructed through multivariate interpola-
tion across a structured parameter grid, with dis-
tinct resolutions for the Xa and Xe parame-
ters. Our Shapley value analysis (detailed in Sec-
tion 2.2) revealed significantly lower sensitivity
to epistemic parameters compared to aleatory pa-
rameters, justifying an asymmetric grid configura-
tion: a refined 7 × 7 Chebyshev grid for aleatory
parameters was paired with a coarser 3 × 3 × 3

epistemic grid. This design choice reflects the
relative parameter influence while maintaining
computational efficiency. Chebyshev nodes were
employed for both parameter classes to mini-
mize Runge’s phenomenon in multidimensional
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interpolation. Splines were then applied to con-
struct continuous response surfaces over the grid.
At each epistemic grid node, we computed the
boundary probabilities in Eqn. (10) where,

pu(Xe,Xc, u) = P

(
max
0≤t≤1

y(X, s, t) > u

)
(11a)

pl(Xe,Xc, l) = P

(
min

0≤t≤1
y(X, s, t) < l

)
, (11b)

following the methodology from Argell (2025),
where X = [Xa,Xe,Xc]. Final estimates of g1
and g2 were determined through extremal value
aggregation across all epistemic parameter config-
urations for fixed Xc settings.

Table 3.: Statistical summary of posterior PDFs
for uncertain parameters by using the “most in-
formative” 95% of the data.

parameters mean standard Quantile values
deviation 2.5% 97.5%

Xa,1 0.502746 0.293117 0.03613 0.96711

Xa,2 0.503434 0.291773 0.03268 0.96907

Xe,1 0.5609452 0.0452712 0.4818 0.6340

Xe,2 0.6000211 0.0514455 0.5083 0.6906

Xe,3 0.608562 0.047600 0.5282 0.6933

Table 4.: Prediction intervals for α = 0.999, 0.95

Variables α = 99.9% α = 95%

g1 g2 g1 g2
y1 0 3.35 0.0056 3, 35

y2 0 3.35 0 3.35

y3 0 3.35 0.0056 3, 35

y4 0 8397.3 0.7688 6834.2

y5 0 3452.0 0.2918 2551.5

y6 0 2990.4 0.2715 2406.6

Fig. 1.: Posterior PDFs from MCMC simulation
for Xa and Xe from UM1.
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Fig. 2.: Posterior PDFs from MCMC simulation
for Xa and Xe by using the “most informative”
95% of the data (UM2).

2.2. Problem 2: Design Optimization
2.2.1. Shapley Value Theorem

The definition of Shapley effects for a model with
d uncertain variables is given by Iooss and Prieur
(2017):

Shγ =
1

d

∑
v⊆−{γ}

(d− 1

|v|
)−1

(w(v ∪ {γ})− w(v)) ,

(12)

where w(...) represents the worth or value of the
coalition, and −{γ} denotes the set of indices
1, ..., d excluding γ. w(v ∪ {γ}) is a coalition
including variable γ and w(v) excluding variable
γ. The marginal contribution of variable γ to a
coalition v is referred to as Shapley effects. We de-
fine the worth of a coalition for systems where the
players are characterized probabilistically as Iooss
and Prieur (2017):

w(v) =
V ar (E[Z|Xv ])

V ar(Z)
, (13)

where X = (X1, ...,Xd) is a set of continuous
independent variables. Xv denotes the set of in-
puts indexed by v(v ⊆ 1, ..., d). Z is the model
response with Z ∈ R. Then, the Shapley value
concept has the following features:

• Of relevance when contribution of each player
is unequal

• Cooperation among players is beneficial rather
than working independently

• Shapley effects are non-negative
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• The sum of all Shapley effects is 1

In the NASA-UQ challenge the following cost
function is considered:

J(Xe,Xc) =

∫ 1

0

∑
i∈I1

E [yi(Xa,Xe,Xc, s, t)] dt (14)

where E[·] is the expected value operator with re-
spect to Xa and s. The set of I1 represents the out-
puts y1, y2, and y3. In this work UQLab Marelli
et al. (2015) is used as a tool for the sensitivity
analysis. 8000 MC samples are used to compute
all order Sobol indices. Since we have 6 uncertain
parameters [Xe,1, Xe,2, Xe,3Xc,1, Xc,2, Xc,3] we
have to compute up to a 6th order Sobol index. For
the computation an Intel(R) Core(TM) i7-14700F
CPU, 2.10GHz, 20 Cores with 32GB RAM is
utilized. Song et al. Song et al. (2016), established
the connection between the first-order, total, and
Shapley effects using the concept of semivalues.
Furthermore, this work uses the mapping between
all order the Sobol indices to Shapley effects as
presented in Stein and Singh (2023). For UQLab
the control variables are assumed to be uniformly
distributed between 0 and 1 while the epistemic
variables are assumed to be normal distributed
with a mean and standard deviation as presented
in Table 2. Xa,1 and Xa,2 are calculated from 4

Legendre-Gauss Quadrature points for the interval
from 0 to 1 making it 16 different nodes. The
output for the sensitivity study is the cost J from
Eqn. (14). Fig. 3 illustrates that the epistemic
variables have a minor influence on the cost J . If
any epistemic variable has an influence it is Xe,1

with a Shapley Effect of 0.011. The most influen-
tial variables are in the order of Xc,1, Xc,2, and
Xc,3, with Shapley effects of 0.5056, 0.2523, and
0.2253, respectively. Again the Shapley effects all
sum up to unity, which provides a graspable metric
to quantify the uncertainty of this complex system.
For illustrating the range of the objective function
J and the range of failure probability pofsys we
used 10 datasamples from our PDFs of Xe.

2.2.2. Finding Xc for Performance-based
Design

We assume that the PDFs of Xe are identified as
described in section 2.1.6. The PDFs of Xa can

Fig. 3.: Shapley Effects of Xe and Xc for set I1.

not be represented with any standard PDF. There-
fore, the expected value of Xa is calculated with
the Legendre-Gauss quadrature points, where the
order is chosen to be 4. The respective Legendre-
Gauss quadrature weights are taken into account.
This and the following grid-search process to ini-
tialize the optimization are presented in Fig. 4.
The control variables are defined over an interval
from 0 to 1. The optimization problem in this
section is based on running an outer optimization
loop for Xc and an inner optimization loop for
Xe. The procedure from section 2.2.1 revealed
that the control variables are most influential on
the cost J . Instead of brute force optimizing over
the whole space, we split Xc up into 0.2 incre-
ments to perform a grid search and sample 10 dif-
ferent sets for Xe using the MATLAB command
“datasample”. This leads to 1250 samples which
are simulated for the grid-based search. The set
that leads to the optimal max min

Xe∈E
J(Xe,Xc), is

used as an initial guess for the double optimization
problem, which in our case Xc = [0.4, 0.8, 0.8]

(see Fig. 4). The solver used for this optimization
is SQP. The X∗c = [0.5000, 0.8477, 0.7590] with
an X∗e = [0.3368, 0.4437, 0.6276]. The cost for
these parameters is J = 8.2130. The range of J
and pofsys over Xe for X∗c is [8.2086, 8.2295] and
[0.2284, 0.2596], respectively.

2.2.3. Finding Xc for Reliability-based Design

For the responses in I2 (referring to the states y4,
y5, and y6), the limit state functions are defined
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Fig. 4.: Grid Search for Initial Guess for
Performance-based Design.

as:

gi(X, s) = ci − max
0≤t≤1

|yi(X, s, t)|, ∀i ∈ I2, (15)

where the constants ci are [2750, 2000, 1000]. The
event gi(X, s) < 0 represents a failure in the i-th
physical response. This implies that yi exceeded
at a certain time instant the constant value of ci.
The individual failure probability is defined as:

pofi(Xe,Xc) = P[gi(Xa,Xe,Xc, s) < 0], (16)

where P[·] is the probability with respect to Xa

and s. The system probability of failure is:

pofsys(Xe,Xc) = P
[
min
i∈I2

gi(Xa,Xe,Xc, s) < 0
]
. (17)

For comparison to the performance-based design
we choose the cost J as an output for the Shapley
effect analysis. Fig. 5 illustrates that the epistemic
variables have a minor influence on the cost J .
The most influential variables are in the order
of Xc,1, Xc,2, and Xc,3, with Shapley effects of
0.6191, 0.2536, and 0.0629, respectively. Again
the Shapley effects all sum up to unity. Here a
grid-search method is used to get a general idea
of which Xc is being used as an initial guess
for the optimizer. Since the set of outputs in I2
depend more on Xc,1 (see Fig. 5) we perform a
grid search of 10 × 6 × 6 as illustrated in Fig. 4.
Xa is calculated with the Legendre-Gauss quadra-
ture points by a 6 × 6 grid. From the findings
of the grid-search we initialize our system with
the variable Xc = [0.4, 0.6, 0.95]. To calculate

Fig. 5.: Shapley Effects of Xe and Xc for set I2.

pofsys we interpolate the time-series data for the
set I2 with 100 interpolation points linearly. To
blend in the uncertainty of epistemic variables we
sample Xe in each optimization loop. Fig. 6 il-
lustrates the optimization process for subproblem
2.2 and 2.3. I1 and I2 represent all sets of I1
and I2. For the reliability-based design X∗c =

[0.419152706, 0.562926273, 0.984253589] with
a final objective convergence of pofsys =

0.0003415.

Fig. 6.: Schematic Overview of Optimization in
Problem 2.2 and 2.3.

The range of J and pofsys over Xe for X∗c is
[7.6232, 7.7637] and [0.0003415, 0.0573048], re-
spectively.

2.2.4. Finding Xc for ε-based Design

Subproblem 2.3 is the combination of subprob-
lems 2.1 and 2.2, except that 2.2 is treated
as a constraint. This attempts to maximize
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the cost function in Eqn. (14) while not al-
lowing the probability of failure of the sys-
tem to exceed a certain threshold denoted as
ε, which is given as either ε1 = 10−3 and
ε2 = 10−4. As an initial Xc for subproblem
2.3, we use the converged solution X∗c from
subproblem 2.2. For ε1 we derived X∗c,ε1 =

[0.421990665, 0.566337066, 0.985701343]. The
range of J and pofsys over Xe for X∗c is
[7.6104, 7.6501] and [0.000310, 0.001000], re-
spectively. For ε2 we derived X∗c,ε2 =

[0.423591229, 0.568260698, 0.986517853]. The
range of J and pofsys over Xe for X∗c is
[7.5798, 7.5948] and [0.000068, 0.000100], re-
spectively.

3. Conclusion

In safety-critical applications, a reliability-based
design framework should be used. This study em-
ployed Legendre-Gauss quadrature for sampling
the design variables Xa, prioritizing accurate es-
timation of the expected value for the objective
function J . Although alternative sampling strate-
gies such as direct sampling from the probability
density function or Latin Hypercube Sampling
could have improved the accuracy of pofsys, they
were less effective in capturing the expected ob-
jective. Given additional computational resources,
increasing the number of quadrature points would
be a promising approach to enhance numeri-
cal accuracy. Our findings indicate that Problem
1 already imposed significant computational de-
mands, with Problem 2 requiring substantially
more effort. The application of the Shapley value
theorem was instrumental in guiding efficient allo-
cation of computational resources. The observed
underestimation of required computational effort
underscores the need for more efficient numeri-
cal strategies or access to greater computational
capacity in future studies. Moreover, future work
may explore the integration of artificial intelli-
gence to better understand the complex system
dynamics. Lastly, we observed that the choice of
the initial guess for Xc has a considerable impact
on the convergence behavior toward the optimal
solution X∗c .
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