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Complex systems have an integrated architecture that leads to non-trivial interdependencies between components.
Any fault in such a system can impact other components, reducing system performance. While most existing
methods can detect process abnormalities and component faults, they often fail to identify root causes. In response,
this study presents a fault diagnosis framework based on domain-specific knowledge. The framework enhances
root cause identification by leveraging expert insights, maintenance logs, and/or other documented knowledge.
The proposed method integrates this knowledge through a structured approach. First, a Failure Mode and Effects
Analysis (FMEA) is conducted to determine the most critical failure modes and associated fault symptoms for each
component. Second, a Fault Tree Analysis (FTA) is used to reveal dependencies between components. The resulting
information is used to construct an improved Fault Signature Matrix (FSM) that captures individual failures and
their system-level dependencies. In this way, people with and without knowledge can use this tool to investigate
failure causes after detecting malfunctions. The proposed methodology is applied to a ship propulsion technology,
providing information on the parameters required to diagnose the state of the system.

Keywords: Root cause analysis, diagnosis, fault signature matrix, fault detection and identification, knowledge-based,
ship propulsion, internal combustion engine

1. Introduction

The demand for greater functionality in today’s
world drives the increasing complexity of engi-
neered systems. Modern systems feature a greater
number of components along with intricate in-
terdependencies (Krishnan and Bhada, 2020; Jia
et al., 2020). While these complex architectures
are designed to address real-world problems, they
also introduce significant challenges in ensuring
system reliability. Achieving high availability and
reliability requires an optimal fault diagnosis pro-
cess (Soleimani et al., 2021). Consequently, this is
a critical area of study; understanding fault char-
acteristics is essential to ensure consistent perfor-
mance without failure over a specified period.

The fault diagnosis process consists of three
tasks: fault detection, isolation, and identifica-
tion (Marra et al., 2016). These tasks determine
whether a fault has occurred, where it has oc-
curred, and identify its root cause, respectively.
An effective fault diagnosis process is vital for
preventing catastrophic consequences, especially
in high-risk applications such as transportation,
energy, and manufacturing.

Over the past years, various approaches have
been explored. These include model-based, data-
driven, and knowledge-based methods (Tinga,
2013; Peng et al., 2021). Although they have
contributed to fault diagnosis, their application in
modern systems is hindered by some limitations.
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Model-based approaches struggle to represent
complex systems accurately due to intricate phys-
ical interactions. Data-driven methods, reliant on
extensive high-quality datasets, are limited by
data scarcity in new systems and their inabil-
ity to diagnose faults not represented in training
datasets (Silveira et al., 2023; Keizers et al., 2024).
Knowledge-based methods, though promising, re-
main underutilized despite their foundation in
physical principles, documented knowledge, and
operator experience. These methods excel at iden-
tifying critical monitoring parameters and their
optimal locations, offering a potential advantage
in systems closely monitored by human operators
(Tinga and Loendersloot, 2014).

One method often used in reliability and safety
analysis is the Fault Signature Matrix (FSM); its
rows represent specific faults, while its columns
indicate the observed symptoms (Arsie et al.,
2010; Polverino et al., 2015). When a fault occurs,
the entries in the associated symptom vector are
assigned a value of one; otherwise, they remain
zero. The FSM is valuable in ensuring system
reliability in complex systems, as it streamlines
the fault detection and isolation process. However,
there is another crucial aspect of fault diagnosis:
fault identification. That is why current research
efforts are focused on addressing this aspect. In-
tegrating root cause identification into the FSM
framework offers a promising solution. This en-
hancement would extend the FSM capabilities be-
yond fault detection and isolation, enabling it to
identify the underlying causes of system failures –
a critical need in fault diagnosis practices.

Bond Graphs (BG) are robust tools for model-
ing physical systems in model-based approaches.
BGs represent system structure and causal proper-
ties through bonds (half arrows) connected to el-
ements, enabling the derivation of Analytical Re-
dundancy Relations (ARRs). These ARRs, in turn,
support FSM construction. Although the literature
extensively explores BG development, recent re-
search focuses on enhancing its practical use. For
instance, Termeche et al. (2018) addressed non-
unique fault signatures in FSMs by combining BG
model outputs with actual system measurements,
generating additional ARRs for unique signatures.

Similarly, Rijsdijk et al. (2024) employed BGs
to derive ARRs encapsulating system causality,
which were subsequently used to construct FSMs.
Their study noted the challenges of representing
system causality and the resource-intensive nature
of modeling complex systems.

In knowledge-based methods, the approach typ-
ically taken is failure analysis, which focuses on
identifying failure modes and their symptoms. For
example, Arsie et al. (2010) applied Fault Tree
Analysis (FTA) to a Solid Oxide Fuel Cell (SOFC)
system, identifying critical failures and organizing
findings into an FSM. While effective for fault de-
tection and isolation, this method cannot identify
root causes. Building on this work, Yousfi Steiner
et al. (2012) extended the analysis by including
additional failure modes, but root cause identifi-
cation remains a challenge.

Consequently, the present study emphasizes the
importance of knowledge-based methods in ad-
dressing gaps in root cause identification, a crit-
ical step often overlooked in fault diagnosis. The
above-mentioned approaches mainly focus on in-
dividual diagnosis, with consideration for fault
detection and isolation. However, the diagnostic
process does not end there. This process also in-
volves identifying the actual cause of the failure,
for which collective aspects and not just individual
diagnosis must be considered. This gap motivates
the current research, which extends the traditional
FSM to improve root cause identification and en-
hance the overall diagnosis process.

The remainder of this paper is organized as
follows. Section 2 presents the proposed FSM
framework. Section 3 illustrates the approach us-
ing a marine combustion engine system. Section 4
discusses the practical impact and future work.
Section 5 is reserved for concluding remarks.

2. Method

The technical framework of this paper builds upon
the traditional approach to constructing the sig-
nature matrix. The present approach includes two
phases: failure analysis and interaction analysis.
The latter is the novel contribution to studying
the interdependencies among system components
before constructing the FSM. This study defines
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system dependencies to understand how individ-
ual failures can impact the overall system rather
than just performing a failure analysis as in the
traditional approach. An overview of the method-
ology is depicted in Figure 1.

Potential faults 
and symptoms

FSM-based 
fault diagnosis

Failure analysis 
(FMEA)

Interaction analysis 
(FTA)

Fault-symptom 
relationship

New in this study

Fig. 1. Overview of the stages of the framework.

The resulting framework uses already-known
methods to leverage and integrate available ex-
perience and knowledge. Accordingly, a Failure
Mode and Effects Analysis (FMEA) and Fault
Tree Analysis (FTA) are used for failure and inter-
action analysis, respectively. The proposed steps
for such analyses are detailed in Figure 2.

 

Phase 2: Interaction analysis
2.1 Select the most critical 

component
(top event)

2.2 Identify first-level 
components

(direct event)

2.3 Identify second-level 
components

(indirect event)

2.4 Assign failure modes 
for each level
(failure event)

FTA

Phase 1: Failure analysis

1.1 Select a component

1.2 Identify gradual 
degradation failure modes

1.3 Determine causes 
and effects of each 

failure mode

1.4 Determine system 
variables to detect each 

failure mode

FMEA

1.5 All 
components?

Failure modes System variables (symptoms)

Yes

No

FSM-based fault 
diagnosis

Fig. 2. Overview of phases and steps in the proposed
FSM framework.

2.1. Failure analysis

Failure analysis is performed using FMEA. It is
a bottom-up approach employed to identify po-
tential failure modes. The analysis starts at the
component level, systematically tracing the po-
tential consequences of failures to higher system
levels (Tinga, 2013). FMEA leverages expertise
from different backgrounds to estimate potential
failures accurately.

The steps of this analysis are outlined in Fig-
ure 2. It is worth noting that the proposed method-
ology introduces a column dedicated to detecting
observed failure modes (step 1.4). This addition,
uncommon in conventional FMEA, aims to gen-
erate a unique signature for each observed failure
mode. Specifically, if each identified failure mode
can be uniquely detected, the corresponding de-
tection signature will be distinct.

2.2. Interaction analysis

While the above analysis identifies relevant failure
modes, it remains limited by one fact: system
interactions. FMEA assumes independent failure
modes, which overlooks dependencies between
system components. Component dependencies are
critical in fault diagnosis in complex systems, as
they describe how one component relies on an-
other to work properly. These interactions often
introduce cascading effects that are not captured
by traditional failure analysis methods such as
FMEA. Hence, incorporating dependencies into
failure analysis not only improves fault diagnosis
accuracy but also enhances system reliability.

This study addresses this challenge by incor-
porating system dependencies into failure anal-
ysis. Specifically, FMEA is integrated with FTA
to capture dependency relationships between sys-
tem components. This integration enables the con-
struction of an improved FSM capable of evalu-
ating the different ways a component of interest
may fail. FTA displays hierarchical failure rela-
tionships and identifies component dependencies.

The proposed steps are detailed in Figure 2. The
procedure categorizes components hierarchically.
The critical component represents the core unit of
the system. First-level components directly influ-
ence the critical component. Second-level compo-
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nents indirectly affect the critical component by
first influencing the first-level components.

3. Case study

3.1. Motivation

The proposed methodology is illustrated using a
marine internal combustion engine (ICE). This
system is considered complex due to the following
reasons: (1) the ICE is a large-scale system with
multiple components; (2) the operation of the ICE
relies on intricate mechanical and thermodynamic
processes; and (3) the complex architecture of
the system increases the chances of cascading
failures, meaning that a failure in one component
can be the result of multiple interacting factors.
Considering these factors, the marine ICE aligns
well with the purpose of the present study.

3.2. Layout

The system layout used is shown in Figure 3.
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Torque sensor
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Fig. 3. A marine ICE system scheme. Adapted from
Kougiatsos and Reppa (2022).

It is seen that other components surround the
engine (block); the most important are the tur-
bocharger (comprising the turbine and air com-
pressor), intercooler, fuel pump, and exhaust man-
ifold. On the air side, the compressor draws am-
bient air and delivers it to the intercooler. The
latter cools the compressed air before supplying
it to the engine. On the fuel side, the fuel pump
supplies fuel to the engine injectors; fuel delivery
timing and quantity are critical for optimal per-
formance and efficiency. Within the engine, the

air from the intercooler and the fuel from the in-
jectors are combined in the combustion chamber.
This mixture is ignited (via compression or spark,
depending on the engine type), generating power
to drive the crankshaft. Finally, the exhaust man-
ifold collects the exhaust gases from the engine
cylinders; these gases are used to drive the turbine,
which ultimately powers the compressor.

3.3. Phase 1: Failure analysis

The most relevant failure modes within the ICE
system are analyzed below and summarized in
Figure 4. It should be noted that this analysis
aims to identify the various factors that can lead
to engine block failure. Failures in the engine
block may result from issues such as valve fail-
ures, cylinder leakage, or blockage; however, this
study refers to as “engine failure,” as this simpli-
fication is sufficient to illustrate the concept. The
reason why this approach is followed is because
the engine is the critical component of the system.
In fact, when a decrease in system performance
is detected, the first component to be evaluated
is the engine block. Consequently, this analysis
examines the typical failures that may occur in the
components of this system with high frequency
and significant influence so that the diagnosis of
these is of engineering importance to prevent dam-
age to the engine sub-unit.

Turbocharger Air leaks are a common issue
in the turbocharger subsystem. Insufficient air
supply to the cylinders could significantly affect
the operation of the engine block due to im-
proper combustion process. Furthermore, fouling
of compressor surfaces is another critical gradual
process. After some hours of operation, fouling
may occur, leading to excessive resistance to air-
flow. Environmental conditions can also exacer-
bate deposit accumulation, reducing compressor
efficiency. Finally, fouled turbine blades are also
a concern. High-temperature exhaust gases are the
primary cause of this problem. Inadequate preven-
tive maintenance allows deposits from combus-
tion to accumulate on the turbine. This reduces
turbine efficiency, which impairs the conversion of
exhaust gas energy into mechanical energy. As a
result, the turbine cannot adequately power the air
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Component Ref. 
No. Failure mode Failure cause Failure effect Detection 

1. Turbocharger 

1.1 Air leaks in 
compressor system 

Loose fittings, seal problems Reduced compressor 
efficiency 

Decrease in compressor 
pressure Worn/damaged hoses, joins  or 

connectors 

1.2 Fouled surfaces in 
compressor 

Build-up of unwanted materials 
which leave the surface of the 

compressor blades rough Excessive airflow 
resistance, reducing 

compressor efficiency 

High temperature at 
compressor outlet Pollutants entering the 

compressor system and a range 
of environmental conditions 

(fog, humidity) 

1.3 Fouled turbine 
blades 

Blades contaminated with layer 
deposits from an incomplete 

combustion process 

Excessive exhaust gas flow 
resistance, reducing turbine 
efficiency and increasing 

fuel consumption 

Decrease in pressure of 
exhaust gases  

2. Intercooler 

2.1 Leaking hoses Worn-out or damaged hoses Rise in temperature entering 
the engine cylinders 

Decrease in intercooler 
pressure 

2.2 Blocked intercooler 
Fouling at the air side  Insufficient airflow and 

ineffective cooling 
High temperature at 

intercooler outlet Intercooler clogged with debris 
on the outside 

3. Fuel pump 

3.1 Failure to adjust fuel 
supply 

Failed pump, clogged filter, or 
blocked fuel line 

Incomplete combustion 
process Low fuel injection supply 

3.2 Failure to create 
pressure 

Impeller get corrosion and 
erosion 

Decreased fuel efficiency 
due to more power 

consumption 

Decrease in pump 
pressure 

Fig. 4. Failure Mode and Effects Analysis (FMEA) for a marine ICE system.

compressor, further affecting system performance.
Intercooler An efficient combustion process

relies heavily on maintaining optimal system tem-
peratures. Hence, an intercooler is used to pre-
vent excessive temperatures in the ICE module.
A reduction in cooling efficiency is often related
to leaking hoses and blocked intercoolers. On the
one hand, leaking houses, typically due to worn
and damaged hoses, result in low air supply to the
cylinders. On the other hand, a blocked intercooler
can also significantly increase air and exhaust
gas temperatures. Both issues lead to inefficient
combustion process within the cylinders. Conse-
quently, detecting fouling levels at an early stage
is highly recommended.

Fuel pump Insufficient fuel delivery is a criti-
cal issue within the fuel delivery system. This is
often caused by a faulty pump or a blocked fuel
line, leading to several performance and efficiency
issues. Inadequate fuel delivery disrupts the air-
fuel ratio, resulting in incomplete combustion; this
reduces power output and increases emissions.
Similarly, an increase in fuel consumption is also
caused by inadequate fuel delivery, as it forces the
engine to consume more fuel to maintain the de-
sired performance. Finally, insufficient fuel pres-
sure due to corrosion and erosion in the impeller
causes a decrease in fuel efficiency.

3.4. Phase 2: Interaction analysis

This phase identifies the most important depen-
dencies among ICE components. The FTA for this
case study is shown in Figure 5.

Combustion engine 
fault

Intercooler 
fault

Fuel pump 
fault

f2.1 f2.2
Compressor 

fault

f1.1 f1.2

f3.1 f3.2

Turbine 
fault

f1.3

Top event
Direct event
Indirect event
Failure event

Fig. 5. A Fault Tree Analysis (FTA) to illustrate the
direct and indirect dependencies that relate to a particu-
lar damage in the engine unit. The labels of the failure
events refer to the fault numbers in Figure 4.

The first-level components identified are the
intercooler and the fuel pump. The second-level
components include the compressor and the tur-
bine, forming the turbocharger subsystem. Note
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that the exhaust manifold does not appear in this
categorization as it is supposed that it does not
affect the engine but only the turbine side. This
is because the high-velocity exhaust gases only
go directly to the turbine blades. Once the com-
ponents are categorized, the previously identified
failure modes can be assigned to each component.
The FTA shows that a functional failure in any
component leads to either immediate or delayed
degradation of the engine block. Therefore, the
key takeaway from this analysis is that consider-
ing system interactions prior to constructing the
FSM is essential for root cause identification.

3.5. FSM construction

The sensor variables to monitor the ICE system
are presented in Table 1. The sensors provide
direct measurements, except for the torque sen-
sor, which enables indirect monitoring of engine
power. Furthermore, the distinction between s3
and s4 is based on the severity of the observed
deviation. Specifically, s3 represents a gradual
deviation from normal operating power, whereas
s4 indicates a sudden and significant drop in en-
gine power. This distinction is essential, as failure
modes affect engine power in different ways.

Table 1. Set of monitored symptoms.

Symptoms Sensor

1 Increase in engine temperature T
2 Increase in fuel consumption F
3 Gradual reduction in engine power M
4 Sudden and significant drop in engine power M
5 High temperature at turbine outlet T
6 Decrease in compressor pressure P
7 High temperature at compressor outlet T
8 High temperature at intercooler outlet T
9 Decrease in intercooler pressure P

10 Low fuel injection supply F
11 Decrease in pump pressure P
12 High temperature of exhaust gases T

The FSM matrix is presented in Figure 6, where
f stands for faults, and s for symptoms. It con-
siders seven system faults that impact engine per-
formance: three related to the turbocharger, two
to the intercooler, and two to the fuel pump. The
sensors used for system monitoring are assumed
to be free from damage.

Air leaks (f1.1) are detected by a decrease in
compressor pressure (s6). Similarly, compressor
fouling (f1.2) and turbine fouling (f1.3) are de-
tected by monitoring the compressor outlet tem-
perature (s7) and turbine outlet temperature (s5),
respectively. These faults lead to high engine tem-
peratures (s1), increased fuel consumption (s2),
and gradual reduction in engine power (s3). The
latter manifests as a sudden drop in power (s4)
when dealing with reduced airflow in the system.

Intercooler faults, such as leaking hoses (f2.1)
or blocked intercoolers (f2.2), can be detected
by measuring the intercooler outlet pressure (s9)
and outlet temperature (s8), respectively. The ef-
fects on the engine are similar to those caused by
turbocharger faults. A reduced cooling efficiency
leads to potential overheating, which is associated
with increased engine and exhaust gas temper-
atures (s1, s12), indirectly affecting combustion
quality and power output (s3, s4).

Fuel pump failures, including insufficient fuel
supply (f3.1) and inadequate pressure (f3.2),
are detected through reduced fuel injection sup-
ply (s10) and decreased pump pressure (s11),
respectively. These faults lead to common con-
sequences, including increased fuel consump-
tion (s2) and elevated engine temperatures (s1).
Additionally, insufficient fuel delivery causes a
sudden drop in power output (s4).

These insights lead to the FSM in Figure 6, re-
vealing that a set of unique signatures is obtained.

4. Discussion

4.1. Practical impact

The approach presented follows the conven-
tional procedure for constructing FSMs based on
knowledge-based methodologies. The improved
FSM retains its suitability for fault detection and
isolation but integrates FTA to identify root causes
of engine block damage. Instead of focusing
solely on failure analysis, this study focuses on
understanding how individual component faults
impact overall system performance. It attributes
engine problems to specific components and un-
covers the root causes of typical failures. Hence,
this improvement should not be seen as including
more failure modes or symptoms but rather as
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Traditional FSM 
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Failure modes  s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 
Turbocharger  
Air leaks in compressor system f1.1 1 1 0 1 0 1 0 0 0 0 0 0 
Fouled surfaces in compressor f1.2 1 1 1 0 0 0 1 0 0 0 0 0 
Fouled turbine blades f1.3 1 1 0 1 1 0 0 0 0 0 0 0 
Intercooler  
Leaking hoses f2.1 1 1 0 1 0 0 0 0 1 0 0 1 
Blocked intercooler f2.2 1 1 1 0 0 0 0 1 0 0 0 0 
Fuel pump  
Failure to adjust fuel supply f3.1 1 1 0 1 0 0 0 0 0 1 0 0 
Failure to create pressure f3.2 1 1 1 0 0 0 0 0 0 0 1 0 

Fig. 6. Fault Signature Matrix (FSM) for a marine ICE system.

associating root causes to specific components.
As highlighted in Figure 6, a traditional FSM

approach would include only symptoms 1-4, as
these are directly associated with engine block
failure. In a more advanced approach, it may also
include symptoms 8-11, which represent the sub-
systems directly connected to the engine (direct
events in Fig. 5). The key addition of the improved
FSM is the incorporation of indirect events (symp-
toms 5-7, 12). These enable the identification of
root cause for events that otherwise could only
be detected. For simplicity, this study assumes
that arbitrarily chosen deviations from nominal
values serve as fault symptoms. In real-world ap-
plications, the actual deviation threshold must be
defined to classify a condition as a fault symptom.

Other subsystems, such as the lubrication loop,
can also be implemented, and the methodology
is still applicable. The authors acknowledge that
complexity was not a significant factor in this case
study. However, complexity may play a role in
other cases. Therefore, the methodology should be
applied to more complex systems. Still, this work
is structured with specific steps to ensure broader
applicability across diverse system architectures.

Future enhancements involve accounting for
additional failure modes. While incorporating
more failure modes increases the likelihood of
repetitive fault signatures, the current work ad-
dresses this issue by including a detection column
in the failure analysis (step 1.4 in Fig. 2). If a
unique detection is guaranteed for each detected
failure mode, the failure signature will be unique.
In this example, the method has resulted in unique
signature matrices, enhancing the robustness of
the diagnosis process. However, for faults f1,1
and f1,3, robustness relies on retaining s5 and s6,
as their omission may result in repetitive signa-
tures. Increasing the number of sensors can also
help generate unique failures, though this depends
on the real-world constraint for sensor placement.

Finally, this work also offers valuable insights
for optimizing sensor architecture. The proposed
methodology implicitly evaluates which sensors
should be integrated to improve system repre-
sentation and diagnostic capabilities. While the
process may seem straightforward, it encourages
both experienced and inexperienced practitioners
to critically assess and determine the most effec-
tive sensor architecture for diagnosing faults.
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4.2. Future work

One key challenge in fault diagnosis is the repre-
sentation of causality. Unfortunately, the current
FSM framework cannot explicitly capture causal
relationships within the system. These causalities,
often embedded in the interactions between com-
ponents, are essential to achieve a more robust and
insightful diagnostic process.

Additionally, the FSM analyzed in this work
is purely diagnostic in nature. That is why cur-
rent research efforts increasingly emphasize the
importance of integrating prognostics. Estimating
fault propagation paths in complex systems is a
particularly pressing issue, as it enables proactive
maintenance strategies. The intricate cause-effect
relationships in such systems pose challenges for
tool construction and interpretation, especially for
practitioners with limited system expertise.

As a result, the authors are actively exploring
ways to enhance the presented FSM framework.
Specifically, efforts are focused on integrating
fault propagation insights while preserving root
cause identification capabilities. This ongoing re-
search builds on the present study’s key findings,
aiming to develop a more comprehensive and
practical diagnostic and prognostic tool.

5. Conclusion

This study examines fault diagnosis with a fo-
cus on enhancing root cause identification. An
improved FSM based on a knowledge-based ap-
proach is presented. The FSM is constructed using
failure information while accounting for system
interactions. Incorporating these interactions has
proven beneficial for improving root cause iden-
tification. The developed method is applied to
a marine ICE. The proposed approach identifies
seven causes of engine subsystem failures without
the need for additional sensors.
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