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Data-driven predictive maintenance (PdM) increasingly leverages machine learning techniques to predict remaining
useful life (RUL) using abundant sensor data, supporting effective maintenance planning. However, most existing
research follows a predict-then-optimize (PtO) paradigm, focusing on prognostic accuracy while overlooking how
RUL predictions affect maintenance decisions. We propose a novel Decision-Focused Predictive Maintenance
framework that bridges the gap between RUL prognostics and maintenance planning. This framework creates
an end-to-end pipeline that directly connects RUL estimation to maintenance actions. An experiment using the
CMAPSS dataset demonstrates that our framework achieves a 9.3% reduction in maintenance costs compared to the
PtO approach. This improvement is primarily attributed to the avoidance of unnecessary preventive maintenance,
leading to a reduction in average lifetime waste due to preventive maintenance from 20.9 to 11.3 cycles. More
importantly, we highlight the distinction between DFPdM and PtO by analyzing the quantile levels of RUL labels
and maintenance decisions, demonstrating that DFPdM exhibits greater consistency in unifying estimation and
optimization. Interestingly, we also observe that DFPdM achieves an acceptable prognostic accuracy, despite not
being the primary training objective. This prognostics accomplished by recalibrating a specific quantile of the
estimated distribution, rather than relying on the expectation or median as is common in conventional approaches.
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1. Introduction

Maintenance optimization has gained significant
attention in both academia and industry as a crit-
ical strategy for reducing operational and mainte-
nance costs, particularly in response to emerging
challenges in the era of big data (De Jonge and
Scarf, 2020; Pinciroli et al., 2023). The integra-
tion of sensors into modern machinery and sys-

tems, combined with advances in machine learn-
ing (ML), has driven the rise of data-driven pre-
dictive maintenance (PdM) (Wen et al., 2022).
Prognostics, central to this approach, focuses on
predicting the remaining useful life (RUL) of ma-
chinery using data analytics with sensors.

Typically, data-driven predictive maintenance
adopts a Predict-then-Optimize (PtO) paradigm.
In PtO, machine learning models are pretrained
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to generate RUL prognostics, which subsequently
serve as input to the downstream maintenance
optimization. The decision-making model uses
these prognostics as input to prescribe mainte-
nance decisions based on a specified criterion.
This methodology has shown significant effec-
tiveness in reducing maintenance costs and min-
imizing failure rates in practical settings (Mitici
et al., 2023). However, the PtO paradigm has been
shown to produce suboptimal decisions when the
model class is misspecified (Hu et al., 2022). This
suboptimality stems from two key issues. First,
predefined model classes often fail to cover the
true data-generating process, leading to inherent
biases. Second, these models are typically opti-
mized for predictive accuracy rather than deci-
sion quality, resulting in a misalignment between
prognostic objectives and decision-making needs
(Kong et al., 2022). To further improve predic-
tive maintenance by reducing costs and prevent-
ing failures, it is important to bridge the gap be-
tween RUL prognostics and maintenance schedul-
ing (JDMD Editorial Office et al., 2023). This
work seeks to fill the gap by developing a closed-
loop, end-to-end framework inspired by recent ad-
vances in Decision-Focused Learning Mandi et al.
(2024).

1.1. Related Works

Several studies use the PtO approach for pre-
dictive maintenance. de Pater et al. (2022) ap-
plied a Convolutional Neural Network (CNN)
to predict point RUL, which was subsequently
employed as input for an integer programming-
based maintenance plan. Similarly, Chen et al.
(2021) utilized an LSTM to predict point RUL
and made maintenance decisions with a threshold-
based policy. When multiple uncertainty sources
arise, probabilistic models become more appeal-
ing. For instance, Lee and Mitici (2023) trained
a CNN with Monte Carlo dropout to generate
probabilistic RUL estimates, which informed a
deep reinforcement learning policy for multi-stage
maintenance planning. Further, Mitici et al. (2023)
developed single and multiple component replace-
ment models based on a renewal-reward process
to determine maintenance actions once the RUL

distribution was estimated by a CNN model.
In these studies, the predictive models were

trained separately from maintenance planning us-
ing regression losses, such as Mean Squared Error
(MSE), which are symmetric with respect to the
prediction error. However, maintenance costs are
typically asymmetric in terms of under- and over-
estimation. In contrast, our framework integrates
predictive modeling and decision-making, thus di-
rectly improves the maintenance effectiveness.

Another stream of research focuses on the
assessment metrics for various prognostic algo-
rithms (Lewis and Groth, 2022), which share a
similar essence with our work. It is recognized
that when evaluating the performance of differ-
ent prognostic models, the impact on downstream
decision-making and health management tasks
should be considered (Atamuradov et al., 2017).
However, these metrics are typically designed for
model comparison after training rather than for
model training. There are two key reasons for this.
First, forecast accuracy has traditionally been the
primary objective of prognostics. Second, these
metrics often involve parametric optimization or
policy, creating technical barriers to their use in
model training. One exception is Kamariotis et al.
(2024), which conducted a broad review on data-
driven predictive maintenance and introduced a
decision-oriented metric for evaluating prognostic
algorithms. The metric was used to tune hyper-
parameters in the model training process. How-
ever, tuning these hyperparameters in this man-
ner can be computationally expensive. In contrast,
our framework directly incorporates a decision-
oriented metric for training the model’s parame-
ters instead of hyperparameters.

Our contributions are as follows. First, we pro-
pose the first decision-focused predictive mainte-
nance framework that seamlessly integrates pre-
dictive and decision-making models into a closed-
loop pipeline prioritizing decision quality. Sec-
ond, we instantiate our framework by an integra-
tion of a Heteroscedastic Neural Network (HNN)
and a differentiable stochastic policy to mitigate
the impacts of model uncertainty on decision-
making, and the computational expenses in the op-
timization differentiation, respectively. Third, we
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compare our framework against the PtO approach
on the CMAPSS dataset, showing our framework
reduces maintenance costs by effectively avoiding
unnecessary interventions with slight compromise
on the prognostic accuracy.

2. Methodology

2.1. Predictive Module

Throughout this work, we assume the specific
downstream task of RUL prognostics is to pre-
scribe maintenance decisions. Additionally, we
consider the maintenance actions belong to a dis-
crete feasible set [H] := {0, 1, . . . , H − 1} denot-
ing H unit-time intervals.

An offline dataset Dn := (si, Ti)
n
i=1 is col-

lected, consisting of n pairs of sensor data si and
their corresponding RUL labels Ti. Additionally,
the survival time ki may be recorded to indicate
how much time the equipment has been in oper-
ation when the sensor data were collected. The
dataset can be derived from run-to-failure exper-
iments. A predictive model m(·; θ), parametrized
by θ, is selected to estimate the RUL distribution
over the same support [H] based on the sensor
data, i.e.,

P̂i = m(si; θ), i = 1, 2, . . . , n. (1)

The parameter H represents the number of time
intervals. A larger H corresponds to a longer look-
ahead horizon, though it may increase computa-
tional complexity. The estimated distribution P̂i is
represented as a vector:

P̂i := [p̂0i , p̂
1
i , . . . , p̂

H−1
i ], (2)

H−1∑
h=0

p̂hi = 1, p̂hi ≥ 0 (3)

with p̂hi the estimated probability of the equipment
failing in the time interval [h, h + 1). Notably,
the probabilistic model can naturally revert to a
deterministic model by assigning a value of 1 to
a single p̂hi for a unique h ∈ [H]. For a compact
representation, we denote the probability simplex
as ΔH−1 := {p|∑H−1

h=0 ph = 1, ph ≥ 0}.
Various probabilistic prognostic methods ex-

ist. However, extending the look-ahead horizon

can lead to high-dimensional distributions, mak-
ing direct probability estimation computationally
expensive. To address this, we adopt the HNN for
generating probabilistic prognostics (Kamariotis
et al., 2024) for its simplicity and model capacity.
Computationally, a HNN model m(·; θ) takes the
sensor data si as input and output two elements
μ̂i and σ̂i, mean and standard deviation, for each
sample, which are further leveraged to construct
a truncated Gaussian distribution P̂i over support
[H],

P̃h
i =

1√
2πσ̂i

e−(h−μ̂i)
2/2σ̂2

i , (4)

P̂h
i =

P̃h
i∑H−1

h′=0 P̃
h′
i

(5)

This method reduces the dimensionality of the
output from H to 2. However, it may introduce
biases by restricting the model family as Gaussian
ones.

2.2. Planning Module

With the estimated distributions, the modeler may
seek an optimization method to determine the
optimal maintenance time. In this work, we in-
stantiate our framework with a single component
replacement problem given constant preventive
and corrective maintenance costs cp and cc, re-
spectively. The model corresponds to a setting that
the decision maker may inspect the system at ar-
bitrary time and must make maintenance planning
in advance. Our planning model follows a stan-
dard contextual stochastic optimization formula-
tion (Sadana et al., 2025), which can be written
as:

ẑ∗(si) := argmin
z∈[H]

EY∼m(S;θ)[ci(z;Y )|S = si]

= argmin
z∈[H]

EY∼P̂i
[ci(z;Y )] (6)

where the feasible set is defined as [H] when no
additional constraints are imposed, and Y repre-
sents the random variable for the RUL, which fol-
lows the estimated conditional distribution given
covariate S = si. The function c denotes the
scenario-specific objective function, defined as:

c(z; y) =
cpI[z ≤ y]

z + ki
+

ccI[z > y]

y + ki
, (7)
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with y a realization of Y , and I[·] the indica-
tor function. This scenario-wise objective func-
tion captures the preventive and corrective main-
tenance scenarios when the decision z and RUL
y are given. An expectation over P̂i is taken to
quantify the expected Maintenance Cost per Unit
Time (MCUT). Notably, this approach maintains
the linearity of the value functions with respect to
the estimated distribution, facilitating the compu-
tational efficiency of our framework. Compared
to renewal process-based models, the contextual
stochastic model emphasizes the uniqueness of
each sample as captured by sensor data. This dis-
tinction is crucial for sensor-driven maintenance
planning since sensor observations are inherently
one-time events. That is, the probability of ob-
serving two identical sensor data is nearly zero,
making a sample-specific approach essential for
accurate decision-making.

2.3. Hard Top-1

To facilitate our framework, we propose an equiv-
alent formulation to Eq. (6), which is essentially
a parametric linear program. First, we define the
concept of a value function for each decision as:

V̂ h
i := EY∼P̂i

[c(z = h;Y )], (8)

V̂i := [V̂ 0
i , V̂

1
i , . . . , V̂

H−1
i ]�, (9)

with V̂ h
i the objective value by substituting deci-

sion z = h given the estimated distribution P̂i for
instance i. With the value function, the optimal
decision ẑ∗(P̂i) can be redefined as follows:

ẑ∗(P̂i) = [H]�w∗i , (10)

w∗i := argmin
w∈ΔH−1

V̂ �i w, (11)

where Eq. (11) finds the dimension of V̂i that
has the minimal value. By the property of the
linear program, w∗i is guaranteed when only one
entry is 1, while the others are 0. By the inner
product of [H] and w∗i , the optimal decision time
is retrieved. It is straightforward to see that V̂i is
linear in P̂i by the property of the expectation op-
erator. This linear program formulation facilitates
our framework by providing the gradient ∇P̂i

ẑ∗i
during backpropagation, as described in Section
3.2.

3. Decision-Focused Framework

3.1. Pipeline

Existing studies on data-driven predictive mainte-
nance often follow a PtO pipeline. For this, model
is first trained using the following formulation:

min
θ∈Θ

1

n

n∑
i=1

�(m(si; θ), Ti) + λ‖θ‖2, (12)

where Θ denotes the space of model parameters,
λ ≥ 0 the strength of regularization, and � a spe-
cific regression loss. Depending the type of model
and labels, MSE and Negative Log-Likelihood
(NLL) losses are frequently adopted. Once param-
eter θ∗ is obtained, the model will provide RUL
estimations for unseen sensor data.

Our framework modify the regression loss � for
prognostics m(si; θ) in the PtO paradigm with
a decision-oriented loss, known as regret. The
sample-wise regret Li is defined as follows:

Li(P̂i, Ti) :=
cpI[ẑ

∗
i (P̂i) ≤ Ti]

ẑ∗i (P̂i) + ki

+
ccI[ẑ

∗
i (P̂i) > Ti]

Ti + ki

− cp
Ti + ki

, (13)

which directly evaluates the decision quality de-
rived by estimation P̂i under the objective func-
tion ci with RUL realization Ti, while the perfect
MCUT is regarded as the baseline. Consequently,
our framework aims to solve the following regu-
larized empirical regret minimization problem by
tuning the predictive model:

min
θ∈Θ

1

n

n∑
i=1

Li(m(si; θ), Ti) + λ‖θ‖2, (14)

The structural difference between our framework
and the PtO paradigm is illustrated in Fig. 1.

3.2. Differentiation

For data-driven predictive maintenance, the pre-
dictive models usually considered are neural net-
works since the sensor data can be temporal-
dependent and high-dimensional. To provide an
informative gradient during training with the
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Fig. 1. Structural difference between Decision-Focused Predictive Maintenance (DFPdM) and PtO.

decision-oriented loss in Eq. (14) for back-
propagation, we apply the following chain rule:

∇θL =
∂L

∂ẑ∗
∂ẑ∗

∂w∗
∂w∗

∂V̂

∂V̂

∂P̂

∂P̂

∂θ
, (15)

in which ∂ẑ∗
∂w∗ = [H], ∂P̂

∂θ is computed by auto-
differentiation, and ∂V̂

∂P̂
can be easily computed

according to Eq. (8). The gradient of the regret
with respect to the decision ẑ∗ and the gradient
of weights w∗ with respect to the value function
V̂ are challenging to obtain, which are addressed
by methods proposed in the next section.

3.2.1. Differentiable Regret

For term ∂L
∂ẑ∗ , the gradient is constantly zero once

decision ẑ∗ is larger than the perfect action time
Ti. To avoid the gradient vanishing while consid-
ering the risk-aversion against corrective mainte-
nance, we introduce the following surrogate regret
loss for Li:

L̂i(z, T ) =

{
cp

z+ki
− cp

Ti+ki
, if z ≤ T,

αcp
2Ti−z+ki

− cp
T+ki

, otherwise,
(16)

with α > 1 a parameter that controls the aversion
against corrective maintenance during training.

3.2.2. Soft Top-1

We consider a differentiable optimization layers
for computing the term ∂w∗

∂V̂
. Specifically, we con-

sider the following soft Top-1 problem:

w̃∗ = argmin
w∈ΔH−1

V̂ �w + εR(w), (17)

where εR(w) is a convex regularization in w that
avoids w from being 1. We take the quadratic
regularization proposed by Amos and Kolter
(2017) for computational tractability, i.e., R(w) =

w�w, and implement it with package Cvxpylayer
(Agrawal et al., 2019). Note that with this regu-
larization, the values of the decision w̃∗ are no
longer 0 or 1, but fractional numbers. Thus, the
soft Top-1 policy becomes a surrogate to Eq. (10).
The surrogate decision is determined as follows:

z̃∗ = �[H]�w̃∗	, (18)

which is a truncated integer by the floor operation
�·	 to mitigate the impact of regularization.

4. Experiments

We conduct a numerical experiment based on the
subset FD001 of the CMAPSS dataset. We fol-
low the previous work Mitici et al. (2023) and
choose the same number of sensors and length
of observation window. We take the first 80 out
of 100 engines from the train DF001.txt file as
training while the remaining 20 are used for test-
ing. Moreover, we focus on the data with RUL
less than Tth = 100 to underscore the importance
of maintenance planning at later stages of equip-
ment’s lifetime. We adopt a linear neural network
with two hidden layers as the prognostic model.
All experiment details are summarized in Table 1.

We select the parameters cc = 500 and cp =

100 in the maintenance optimization for both PtO
and DFPdM frameworks. Note that these parame-
ters serve the framework in the policy. The con-
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Table 1. Experimental details.

Framework DFPdM PtO

H 125 125
Tth 100 100
Hidden layer [400,100] [400,100]
Optimizer Adam Adam
Batchsize 32 32
Epochs 1500 1500
Learning rate 1e-4 1e-4
ε 0.05 -
α 5 -

figuration is thus fixed in forward pass because
DFPdM integrates the predictive model and the
policy. In the evaluation step, the decision quality
is assessed by the average relative MCUT over the
testing dataset Dtest:

M =
1

|Dtest|
∑

(si,Ti)∈Dtest

Li

cp/(Ti + ki)
. (19)

Fig. 2 presents the prognostics and maintenance
decisions computed by the two frameworks for
five testing engines, indexed from 81 to 85. The
MSE-PtO approach provides a reliable estimate of
the remaining useful life (RUL) when using the
quantile q0.5 as the prognostic indicator, resulting
in a mean absolute error (MAE) of 7.30 over the
testing set. However, the stochastic policy derived
from the MSE-PtO prognostics yields conserva-
tive decisions, leading to an MAE of 20.9 when
compared to the ground truth RUL labels.

In contrast, the DFPdM framework prescribes
less conservative decisions than PtO, though it
remains conservative compared to the labels, es-
pecially at the beginning of the horizon. Overall,
the conservativeness of DFPdM decisions can be
attributed to the asymmetry of the regret function
L̂. During training, DFPdM informs the predic-
tive model of the consequences associated with
the prognostics. As a result, the MAE between
DFPdM decisions and ground truth is reduced
to 11.3. Notably, unlike PtO, where the median
quantile q0.5 is used as the prognostic, the optimal
prognostic for DFPdM is selected as q0.05. This
quantile q0.05 is first recalibrated on the training
set before being applied to the testing set. As

a byproduct of DFPdM, the MAE of DFPdM
prognostics is 7.78. While slightly compromising
prognostic accuracy, DFPdM reduces the MCUT
by 9.3% compared to PtO. Moreover, it results
in 12 corrective maintenance actions out of 2020
samples, compared to 5 made by PtO. It is im-
portant to note that the substantial reduction in
RUL waste—from 20.9 to 11.3—only moderately
impacts cost reduction, as the MCUT metric does
not account for additional factors influencing pre-
ventive maintenance costs.

To comprehensively differentiate the two
frameworks, we illustrate the distributions of
quantile levels corresponding to ground truth and
decisions in Fig. 3. As shown in Fig. (3a), both
PtO and DFPdM decisions result in relatively con-
sistent quantiles concentrated within the interval
[q0, q0.02], as both frameworks rely on the same
stochastic optimization model. However, com-
pared to PtO, DFPdM exhibits a narrower range
of decision quantile levels, predominantly falling
within [q0.01, q0.02] for more than 85% of the sam-
ples. This highlights its consistency in decision-
making and distribution estimation.

Furthermore, Fig. (3b) reveals the intrinsic dif-
ferences between PtO and DFPdM in terms of
prognostic estimation. By mapping RUL labels
onto quantile levels, PtO demonstrates a nearly
symmetric and even distribution around q0.5,
aligning with the calibration condition required
for probabilistic models to effectively quantify
uncertainty. In contrast, DFPdM adjusts the esti-
mated distributions such that decisions are closer
to the actual labels. This is driven by the principle
that maintenance costs can be minimized when
decisions approach the labels on the left side of
the distribution. This observation also justifies the
selection of q0.05 as the optimal prognostic for the
DFPdM framework, as it approximately partitions
the samples into two equal subsets.

5. Conclusions

We proposed the first decision-focused framework
for data-driven predictive maintenance incorporat-
ing ML models. The framework directly adopts a
decision-oriented metric, i.e., regret, as the train-
ing objective for the ML-based predictive model
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Fig. 2. Prognostics and decisions made by DFPdM and PtO for 5 out of 20 testing engines within 100 RUL. Note
that PtO and DFM (short for DFPdM) take quantile q0.5 and q0.05, respectively.
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Fig. 3. Distribution of quantile levels in the testing
samples for (a) RUL labels and (b) decisions from the
two frameworks.

in contrast to PtO approaches which leverage a
conventional regression loss. We instantiate our
framework by seamlessly integrating probabilis-
tic prognostics and a stochastic optimizer into
a closed-loop, end-to-end pipeline. Experiments
based on the CMAPSS dataset demonstrate the
issue of target misalignment caused by PtO ap-
proaches. Instead, our framework generates in-
terpretable prognostics and relatively conserva-
tive decisions. As such, our framework improves
the average MCUT by 9.3%, reducing the aver-
age wasted RUL from 20.9 cycles to 11.3 cycles
for 2020 samples. By analyzing the relationship

between the quantiles, RUL labels and mainte-
nance decisions, we demonstrate the consistency
of DFPdM in prognostics and optimization and
suggest that the traditional regression losses may
be inappropriate for probabilistic prognostics if an
explicit maintenance task follows.

Our framework is partially constrained by the
capacity of the predictive model, which employs
a two-layer neural network and heteroscedastic
model and aims to capture the complex time-
series characteristics of sensor data. Therefore, we
limited ourself to implement the framework for
engines with an actual RUL less than 100 cycles.
We achieve improvements in the decision-oriented
metric, as well as an increase in the computa-
tional cost to obtain maintenance decisions. This
is primarily due to the need for solving multi-
ple optimization instances during each forward
pass and differentiating the soft Top-1 operator.
Furthermore, as a preliminary work to demon-
strate the effect of framework, our maintenance
planning model considers limited factors. In the
future works, we aim to address the computational
challenges using more advanced ML models and
conduct a more thorough analysis regarding the
inconsistency issue of PtO approaches for predic-
tive maintenance, as well as case studies incorpo-
rating realistic maintenance planning settings.
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