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Hydrogen refueling station (HRS) safety is receiving increasing attention with the growth of hydrogen energy application. Existing risk 

assessment methods of HRS are primarily based on expert knowledge to develop failure processes. It may lead to insufficient accuracy due to 

potential subjectivity. This paper aims to conduct a new hybrid risk assessment method by incorporating the latest HRS accident data and physical 

knowledge into a Bayesian network (BN) model to analyze the key risk influencing factors (RIFs). In this paper, the latest HRS accident data in 

HIAD 2.1 from 1980 to 2023 is collected. 30 RIFs are identified based on the accident report and physical knowledge. Use Bayesian Search (BS) 

for structure learning. The expectation maximation algorithm is designed in the parameter learning stage to obtain the data-driven BN model. 

Additionally, K-fold cross validation is dedicated to test the performance of different BN models. With these developments, new findings and 

implications are revealed beyond the state-of-the art of HRS risk analysis. 
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1. Introduction 

As an important part of the hydrogen energy 
infrastructure, urban HRSs play a key role in the transition of 
urban transport systems to decarbonization (2024). However, 
due to the special characteristics of hydrogen, such as low 
minimum ignition energy ( 0.019 mJ), wide explosive limit 
(18.3%-59%), fast flame speed ( 2.79 m/s), and a wide 
flammability range (4%-75%) (Deng et al. 2023), HRS are 
exposed to multiple risk scenarios during operation. Without 
effective risk management, HRSs can lead to serious accidents, 
endangering the safety of people and environmental stability. 
For example, in May 2019, an explosion occurred at a 
hydrogen fuel storage tank located in South Korea, which 
resulted in two instant deaths and six injuries (China 2019). 
Therefore, it is particularly important to prevent multiple HRS 
accidents to ensure operation safety (Hoseyni et al. 2024). For 
this, it is necessary to carry out risk analyses to discover the 
key risk factors. 

Hydrogen production, storage, and transportation still 
face numerous challenges. Currently, hydrogen production 
mostly relies on fossil fuels (gray hydrogen), which accounts 
for about 96% of global hydrogen production, significantly 
increasing its environmental impact (Odoi-Yorke et al. 2025). 
To advance the production of green hydrogen, the research by 
Hossain et al. focuses on solar energy for hydrogen production. 

With advances in concentrated solar power (CSP) systems, the 
efficiency of solar thermal hydrogen production has reached 
45%, much higher than that of conventional electrolysis 
methods. At this stage, storing hydrogen at low temperatures (-
253°C) or high pressures (700 bar) remains a significant 
challenge, both storage efficiency and safety need to be 
improved. Additionally, the efficiency of electrolysis 
technology still ranges from 60% to 80%, and production costs 
remain relative high (Bokde 2025). 

Existing methods for risk assessment of hydrogen 
refueling stations are mainly based on expert knowledge to 
develop failure processes. This manually designed structure is 
likely to be subjective, leading to a lack of accuracy. 
Inadequate data is another challenge for conducting a purely 
data-driven method. It may lead to inaccurate reasoning when 
missing data situations are encountered. Regarding the study 
of HRS accidents, historical data is usually insufficient. To 
address the missing data, this paper builds a physical-data-
driven model by incorporating the latest HRS accident data and 
physical knowledge into a Bayesian Networks (BN) model, 
combining the physical model with a data-driven approach. 

Hydrogen Incidents and Accidents Database (HIAD 2.1) 
is the most authoritative on hydrogen accidents. It includes the 
updating of more than a thousand hydrogen accidents 
worldwide (as of September 2023), but only 104 accidents are 

2685



2686 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

 

related to HRSs. To address the problem of too few data, in this 
paper we use Generative Adversarial Network (GAN). 

The core concept of GAN is to generate data through an 
adversarial process that involves two models: a Generator and 
a Discriminator. Initially, GAN was mainly applied to image 
synthesis (Tan et al. 2025), art creation, drug discovery (Lu et 
al. 2022), etc. In these fields, data is often protected by privacy 
regulations, making it difficult to obtain (Jiangzhou et al. 2024). 
Both In the foreign exchange market, Kexin Peng and others 
used GANs to predict exchange rate returns, effectively 
improving trading decisions and risk assessment capabilities 
(Peng et al. 2025). Biao He and others used CTGANs to 
generate synthetic over-sampling datasets, increasing the 
diversity and quantity of data. It has been shown that the 
synthetic datasets generated by CTGANs can effectively retain 
the features of real data and solve the problem of data shortage 
and imbalance (He et al. 2024).  

Leveraging all the above, in this work a physics-informed 
data-driven BN modeling approach by HRS risk analysis is 
developed. 

The main contributions can be summarized as follows: 
(i) Develop a new physics-informed and data-driven risk 

assessment method for HRSs. 
(ii) Use of the CTGAN method for addressing the issue 

of limited accident data. 
(iii) Identification of risk factors for HRS. 

2. Methodology 

2.1 Bayesian Networks 

BN is a graphical network based on probabilistic 
reasoning, which is a combination of probability theory and 
graph theory. The topology of a BN is a directed acyclic graph, 
where the nodes represent random variables, which can be 
observable variables or hidden variables, unknown parameters, 
etc. The fundamentals of BN are given in formula (1) and (2) 
(Liu et al. 2022). By considering the conditional dependencies 
of n random variables A1, A2, …, An, a directed acyclic graph 
with n nodes depicts the joint probability P(U) of variables U 
= {A1, A2, …, An} (Hoseyni, Mesbah Mostafa 2024). 

  (1) 
where Pa (Ai) denotes the parent node of variable Ai in BN. 

Based on BN’s theorem, given new observation or 
evidence E, BN can update the prior probabilities of variables 
with rendering posterior probabilities (Xing et al. 2022). 

  (2) 

3. Data Collection and Processing 

3.1 Data collection and pre-processing 

The initial data for this study was obtained from the HIAD 
2.1 database (Tools 2024). This database has a wide range of 
data sources that are covered globally. We have collated 
accident data from 1980 to September 2023 from it. And, to 
avoid duplication of generalized data, only one database is 
referred to in this study. 

The first step was to extract hydrogen accidents related to 
HRS from HIAD 2.1, and by sorting and categorizing the 
events and summarizing the previous literature, leakage, fire 
and explosion can be identified as the main types of HRS 
accidents (Xing, Wu 2022). Leakage refers to the accidental 
escape of hydrogen from storage, transportation, or use 
equipment, leading to an increase in the hydrogen 
concentration in the air, which raises the risk of fire and 
explosion. Fire occurs when hydrogen gas, mixed with air, 
combusts in the presence of an ignition source, potentially 
releasing heat and posing dangers to the surrounding 
environment. Explosion, on the other hand, is a violent 
reaction triggered by an external ignition source or other 
stimuli when the hydrogen-air mixture reaches its explosive 
limits in an enclosed or confined space, resulting in a strong 
shockwave and instantaneous release of energy.  

After screening the events in the HIAD 2.1 database, we 
have compiled 108 events that can be used for reference. By 
analyzing the causes, passages, and results of these events, 51 
RIFs were obtained. However, some of the nodes appeared less 
frequently, and fewer occurrences may lead to the lack of 
influence of these nodes in the model, thus affecting the overall 
structure learning. Therefore, it is necessary to merge these 
nodes. After a series of adjustments and integrations, we finally 
obtained 30 new RIFs, as shown in Table 1. 

These new RIFs more centrally reflect the characteristics 
of various potential risks and cover different types of events 
and factors, making subsequent analysis and research more 
efficient. 

Table 1 RIFs for HRS accidents 

Symbol Event Symbol Event 

X1 Unexpected source of 

ignition 

X2 Inadequate maintenance 

X3 Vehicle collision X4 Uneven flange preload 

X5 Insufficient screw torque 

value 

X6 Non-compliance with 

emergency procedures 

X7 Mishandling X8 Lack of risk assessment 
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X9 Poor system design X10 Lack of training or 

experience 

X11 Inadequate organizational 

systems 

X12 Unreasonable provisions 

X13 Emergency management 

deficiencies 

X14 Pipe joint seal failure 

X15 Failure of environmental 

hydrogen detection device 

X16 Failure of pressure 

detection device 

X17 Unreasonable detection range 

or layout 

X18 Failure of the emergency 

response system 

X19 Electromagnetic threshold 

fault (physics) 

X20 Pressure relief device 

failure 

X21 Filter failure X22 Electrical short circuit or 

overload 

X23 Hose fitting rupture X24 Hydrogen embrittlement 

X25 Weld cracking X26 Inadequate material 

performance 

X27 Abnormal heating of 

hydrogen due to throttling 

effect 

X28 Natural disaster 

X29 Third-party impact X30 Radioactive isotope of 

hydrogen 

4.2 Data augmentation 

Insufficient data samples may lead to overfitting of the 
model during training, thus affecting its generalization ability 
and prediction accuracy. In this case, data augmentation 
techniques are particularly important and valuable (Yoo et al. 
2024).  

GAN is an innovative deep learning model consisting of 
two neural networks: a Generator and a Discriminator. These 
two networks are trained in an adversarial way to form a 
dynamic game process. During the training process, the 
generator and the discriminator are updated by alternating 
optimization. 

To develop a data-driven BN model, the size of the dataset 
needs to be further extended to enhance the model's expressive 
capability. To this end, in this paper, a synthetic dataset 
containing 1180 samples is generated using CTGAN.  

After extending data size, assessing the quality of the 
generated data is a crucial step. This process not only ensures 
that the generated data has practical application value but also 
improves the effectiveness of subsequent model construction. 
The expert review can judge the quality of the generated data 

by judging the loss function of the generator and discriminator 
that generate the data to ensure that the generated data meets 
the practical application requirements (Li et al. 2023a). The 
loss curves of the two need to tend to be in equilibrium, as 
shown in Figure 1, which plots the loss functions of the 
generator and the discriminator for the data of this study. 

 

Figure 1 CTGAN loss function 

4. Case Study 

4.1 Structure learning and parameter learning 

4.1.1 Structure learning 

In this paper, a physical model is combined with a data-
driven approach to form a physical-data-driven model that can 
handle a large amount of uncertainty. The HRSs system is a 
complex multilevel and multifactor system with many 
uncertainties, such as equipment failures, fluctuations in 
energy supply, and changes in the external environment. BN 
can handle these uncertainties and provide feasible decision 
support based on data-driven reasoning. 

This study adopts a physics-informed and data-driven 
approach to structure learning with GeNIe 5.0 as a means of 
automatically identifying relationships and dependency 
structures between variables. In this section, the processed data 
information is first input into the system, and then the physical 
information is used as an additional input to define the coercive 
relationship between different nodes.  

To better compare the advantages and disadvantages of 
each model, three different types of structure learning 
algorithms were selected for systematic analysis and 
comparison. These three algorithms are constraint-based 
structure learning (PC), score-based structure learning (BS), 
and probabilistic and graph theory-based structure learning 
(GTT).

4.1.2 Parameter learning
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Parameter learning is the process of estimating unknown 
parameters in a model from data given by the model structure. 
It is concerned with optimizing the parameters of the model so 
that the model can best describe the data. In this section, EM 
algorithm is utilized to launch the parameter learning of the BN 
model. The EM algorithm consists of two steps, the E-step and 
the M-step (Hoseyni, Mesbah Mostafa 2024). 

In the E-step, the posterior distribution of the hidden 
variables is computed given the observed data and the current 
parameters. Using the structure of BN, the expectation of a 
hidden variable can be computed by methods such as forward-
backward algorithms or variational inference, as shown in 
formula (3) (Li et al. 2023b): 

  (3) 

where θ(t) is the current parameter. X is the given observation.  
Q (θ| θ(t)) refers to the function that computes the expected 

value of the hidden variable Z under the current parameter θ(t).  
P (Z, X|θ(t)) refers to the posterior probability distribution of 
the hidden variable Z. 

In the M-step, the parameters of the BN are updated using 
the expectation of the hidden variables computed in the E-step. 
For CPT, the parameters can be updated by maximizing the 
likelihood function using the current hidden variable 
expectations, as shown in formula (4) (Li, Ren 2023b): 

   (4) 

where θ(t+1) denotes the updated model parameters in the t+1st 
iteration. 

If the change in the log-likelihood function is less than a 
set threshold   in successive iterations, the algorithm is 
considered to have converged , as shown in formula (5) . 

   (5)

Figure 2 Structure learning developed by BS algorithm

4.2 Model validation 

Model validation aims at evaluating the validity and 
reliability of the constructed BN model to ensure that the 
model accurately represents the underlying connections in the 
data and may provide reliable predictions or inferences. In this 

case, the most appropriate method for model evaluation is K 
cross-validation. In machine learning practice, many studies 
and experiments have shown that cross-validation using k=10 
usually yields better generalization performance.  

The outputs of the K-fold cross-validation include Overall 
Accuracy (OA), Precision, Recall, and F1 score (Li, Ren 
2023a). The predictions made by the BS algorithm were 
generally greater than those made by the GTT and PC 
algorithms. This shows the good performance of the network 
structure based on the BS algorithm. The specific results of the 
calculations are in Table 2. 

Table 2  Predictive performance metrics of the BS algorithms 

 OA Precision Recall F1 score 

BS 91.8  96.3  99.4  95.1  

GTT 90.2  96.4  86.4  92.7  

PC 89.2  89.4  97.8  93.8  

Figure 2 shows the HRS accident network model 
developed by the BS algorithm. 
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This paper chooses to use the BN model developed by the 
BS and EM algorithm for the HRS accident study in the next 
research. 

4.3 Sensitivity analysis 

Sensitivity analysis is a technique that can help to 
understand how input parameters affect output parameters, 

which is a effective means of BN verification. We observe the 
sensitivity of the model to different nodes by perturbing the 
data to a certain extent. This reveals which factors have a large 
impact on the model results. A sensitivity analysis was 
performed to obtain the impact of different factors on the 
outcome of the three accident types (Li, Ren 2023b). 

 

 
Figure 3 Sensitivity network for HRS accidents

As shown in Figure 3, a detailed sensitivity analysis was 
conducted for the entire BN model. This analysis takes Type as 
the target node, and the goal is in exploring the degree of 
influence and importance of other nodes on this target node. 
The red nodes (X3, X14, X22, X23, X25, X29) are critical to 
the posterior probability distribution of the target node. These 
nodes represent the factors that have the greatest impact on the 
node Type, and any adjustment to these nodes may 
significantly change the probability values of the target nodes. 
Therefore, these red nodes need to be prioritized during the 
optimization of the model to ensure the validity and accuracy 
of the model. The pink nodes also play an important role in 
influencing the target nodes, and although their influence is 
relatively weak. The gray nodes show a very low probability 
of influencing the target nodes throughout the analysis (Odoi-
Yorke, Agyekum 2025). The factors represented by these 
nodes have almost no significant effect on the posterior 
probability distribution of Type. Therefore, the adjustment and 
optimization of these grey nodes can be ranked as the last 
consideration in the model optimization process to reduce 

unnecessary complexity and computational cost (Odoi-Yorke, 
Agyekum 2025). 

The width of the edges in the network indicates the 
sensitivity of the influence to the target variable, the wider the 
edge, the greater the influence (Liu, Yu 2022). There are 40 
connecting lines in the model, and there are five connecting 
lines pointing to the target node, all of which have the largest 
influence on the target node. 

4.3.1 Sensitivity analysis of leakage accident 

Figure 4 shows the comparison of the prior probability 
and posterior probability of different nodes under hydrogen 
leakage accident. Figure 5 shows the tornado diagram of the 
target node (Type) when the accident type is set to leakage. The 
horizontal axis of the bar graph represents the different 
parameters while the vertical axis represents the range of 
variation in the state of the target node. The red bar indicates a 
negative change in the state of the target when the parameter is 
varied, which means that the change in that parameter needs 
lead to deterioration in the state of the target node, while the 
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green bar indicates a positive change, which means that the 
change in the parameter needs lead to improvement in the state 
of the target node. 

 
Figure 4 Comparison of the prior and posterior probability under leakage accident

 
Figure 5 Sensitivity analysis tornado diagram for leakage state 

 
Figure 6 Tornado diagram for explosion accident

Figure 5 shows the 10 factors that have the greatest impact on 
the leakage accident. The most significant events affecting the 
state of the target node in the event of a leakage at the HRS are, 
in descending order of importance, X23, X14, X3, X29 and X 
25. Therefore, corresponding measures can be taken for the 
above nodes to avoid leakage. 

Based on the BN diagnosis results, X23, X14 and X3 are 
affected by node X22, highlighting the severe effects of an 
electrical short circuit. Similarly, X29 is affected by X16, 
reflecting problems with regular maintenance, environmental 
control, and overload protection (Xing, Wu 2022). 

4.3.2 Sensitivity analysis of explosion accident 

In the same way, Figure 7 shows the comparison of the 
prior probability and posterior probability of different nodes 

under hydrogen leakage accident. Figure 6 is a tornado 
diagram of the full range of sensitivity analysis of the BN 
model when an explosion accident occurs. It is obvious that 
under the explosion accident, the most influential ones are X25, 
X3, X14, X23, X29, and X16. X25 (Weld cracking) is the node 
with the highest sensitivity. X25 is affected by parent node x5 
in the explosion state, X3, X14, X23 by X16 and X14 by X22 
at the same time. 

In addition, compared with the tornado graph in the 
leakage state, it is found that the nodes that have an impact on 
the target node remain basically the same. This stability 
reflects the intrinsic connection between the nodes and 
suggests that the influence of specific nodes on the system 
dynamics is continuous and reliable under multiple states 
(Xing, Wu 2022). 
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Figure 7 Comparison of the prior and posterior probability under explosion accident

4.3.3 Sensitivity analysis of fire accident 

When the fire accident occurs, the posterior probability of 
each node is compared with the prior probability, as shown in 

Figure 8. Figure 9 is a tornado diagram of the full range of 
sensitivity analysis of the BN model when the fire accident is 
set as the target variable of the sensitivity analysis. 

 
Figure 8 Comparison of the prior and posterior probabilities of nodes under fire accident 

Sensitivity order from high to low is as follows: X25, X3, 
X23, X29, X14. The order of these nodes indicates the degree 
of their impact on the HRS at the time of the fire event. It is 
noteworthy that this result is generally consistent with previous 
analyses of leakage and explosion hazards. This consistency 
suggests that the effects of the main causal factors are similar 
in hydrogen station-related accidents, despite the different 
types of accidents.  

In this study, a physics-informed data-driven BN for risk 
analysis of HRS is proposed. 30 RIFs are identified by 
applying the HAZID accident data and related literatures. To 
solve the problem of insufficient data, physics information is 
integrated to define the coercive relationship of BN nodes.  

Additionally, to improve the precision of the results 
CTGAN is applied to augment the pre-processing data. The BS 
and EM algorithms are used for structure learning and 
parameter learning of BN, respectively. Through the results, 
we found that the critical node with the greatest impact on 

leakage accidents is X23, and the critical node with the greatest 
impact on both explosion and fire accidents is X25. 

 
Figure 9 Sensitivity analysis tornado diagram for fire accident 

Although the critical node with the greatest impact on 
these accidents are different, we found that the critical nodes 
with a greater impact on them are essentially the same in the 
sensitivity analysis. These critical nodes include X3 (vehicle 
collision), X14 (pipe joint seal failure), X16 (pressure 
detection device failure), X23 (hose joint rupture), X25 (weld 
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cracking), and X29 (third party influence). These nodes show 
high impacts in different accident scenarios, indicating that 
they are non-negligible factors in the safety management of 
HRS. 

The sensitivity analysis in the paper reveals the key 
factors influencing the occurrence of accidents at hydrogen 
refueling stations, and this analytical approach is also 
applicable to other industries. Hydrogen station managers can 

embed the BN model into the monitoring system to simulate 
potential fault scenarios, predict outcomes, and determine the 
priority of mitigation measures. In future work, dynamic risk 
assessment of HRS is needed to capture the degradation 
performance of critical components(Xing et al. 2024). 
Meanwhile, the dynamic risk assessment method can help 
predict the time point of equipment failure and optimize the 
maintenance strategy to avoid unexpected accidents.
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