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Stochastic model updating is a vital technique in engineering that can calibrate the input parameters of the 

computational model to reflect the real-world physical system while accounting for the existence of uncertainties. 

However, traditional methods such as the Bayesian approach always struggle with high-dimensional and nonlinear 

problems. Thus, there is a trend to adopt data-driven approaches to solve stochastic model updating problems 

since of their remarkable capability to process high-dimensionality and nonlinearity. Apart from utilising neural 

networks as a surrogate for forward models, the conditional invertible neural networks (cINNs), a type of flow-

based deep generative model, can serve as an inverse surrogate to address stochastic model updating problems 

alternatively. Recently, another group of deep generative models called Diffusion Models has become very 

popular in generation tasks because of their better ability to handle complex distributions, flexibility in network 

architecture and stability in training. In this work, the feasibility of leveraging diffusion models to resolve 

stochastic model updating problems is investigated. Diffusion models transform a simple latent distribution (e.g., 

Gaussian noise) into a complex distribution that aligns with observation data through a gradual iterative process. 

In contrast to cINNs, diffusion models build up complexity in the learned distribution progressively through a 

series of Markov chains, allowing for more accurate modelling of complex systems with high uncertainty. A 3 

DOF spring-mass system was adopted as an example. The training dataset is formed by input parameters 

generated from the prior distribution and synthetic observation data obtained from the forward numerical model. 

This work presents diffusion models as a potential alternative to conventional Bayesian approaches for stochastic 

model updating, with advantages in accuracy, uncertainty, and flexibility for complicated, real-world applications. 
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1. Background 
All the engineering models are not entirely 

correct since the inevitable discrepancies 

between the experimental observations and the 

numerical simulations caused by the existence of 

aleatory and epistemic uncertainties (Bi et al. 

2023). The model updating technique was 

developed in the deterministic domain by 

adopting the sensitivity-based approach (John E. 

Mottershead, Link, and Friswell 2011) to 

calibrate the input parameters of the numerical 

models. The parameters of interest then become 

those affected by the uncertainties, so the 

stochastic model updating was then proposed 

(J.E. Mottershead et al. 2006). A variety of 

approaches demonstrated their capability for 

stochastic model updating problems, such as the 

optimisation-based approach and Bayesian 

model updating framework (Beck and 

Katafygiotis 1998). The optimisation-based 

approaches define an objective function that can 

quantify the differences between the simulation 

and observation. The minimised objective 

function will result in optimised input 

parameters. The Bayesian model updating 

framework, on the other hand, was established 

based on the Bayesian inference, which can 

obtain the posterior distribution of uncertain 

parameters from prior knowledge and the 

likelihood function. The likelihood computation 
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can be achieved through various methods, such 

as Euclidean and Bhattacharyya distance-based 

likelihood functions, which are widely used as 

an approximation to enhance computational 

efficiency. Some sampling algorithms like 

Markov chain Monte Carlo (MCMC) and 

Transitional Markov chain Monte Carlo are also 

utilised to obtain the posterior distribution. The 

above structure makes the Bayesian model 

updating framework powerful while at the same 

time making it inefficient in some instances. It 

leads to the tendency to leverage data-driven 

techniques to facilitate model updating 

problems.  

In the present studies, a lot of work has been 

done by developing novel neural network-based 

surrogate models to replace the computationally 

expensive forward numerical (e.g., finite element 

models (FEMs)). However, the drawbacks of 

traditional model updating methods, like high 

computational demand and being overwhelmed 

by high-dimensional data, remain. The deep 

generative models, e.g., Variational Autoencoders 

(VAEs), Generative Adversarial Networks 

(GANs), and Conditional Invertible Neural 

Networks (cINNs), which are widely used in the 

image generation field and other generation tasks, 

become potential tools to tackle stochastic model 

updating problems. They share similar objectives 

with model updating, which is to generate 

unknown data given some conditions after 

training by acknowledged data. Recently, the 

VAEs (Lee et al. 2024), GANs (Yuan et al. 2023) 

and cINNs (Zeng, Todd, and Hu 2023) have all 

been successfully implemented in the stochastic 

model updating area. Diffusion models (Ho, Jain, 

and Abbeel 2020) are a different class of deep 

generative models that have recently become 

more popular in generation tasks because of their 

superior handling of complex distributions, 

network architecture flexibility, and training 

stability, which opens the possibility of employing 

them for addressing stochastic model updating 

problems. 

Similar to other latent space-based methods, 

diffusion models can also build connections 

between a complex distribution and the latent 

distribution (normally standard Gaussian 

distribution) by adding Gaussian noise on the 

initial distribution over a series of time steps 

gradually until a pure Gaussian noise distribution 

is obtained, which is called the forward diffusion 

process. In the reverse diffusion process, the pure 

Gaussian noise can denoise progressively to 

generate a sample. In the training phase, the noise 

added at each time step of the forward process is 

predicted by minimising the difference between 

the true noise in the forward process and the 

predicted noise in the reverse process. 

In this contribution, a novel stochastic model 

updating method based on diffusion models is 

proposed. The diffusion model is set up and 

trained by the training dataset obtained by 

sampling input parameters from the pre-defined 

prior distribution and collecting the corresponding 

output data of the forward model. The well-

trained diffusion model can then generate the 

posterior distribution by taking the observation 

data as the condition. A classic three-degree-of-

freedom spring-mass system is adopted as an 

example. The training dataset is formed by 

stiffness parameters and the natural frequencies, 

and the synthetic observation data are output data 

derived by taking samples drawn from the true 

distribution as input parameters. 

The remainder of the paper is organised as 

follows: Section 2 introduces the basic theory of 

diffusion models. In Section 3, the framework for 

diffusion models-based stochastic model updating 

is presented. This framework is implemented in a 

case study involving a three-degree-of-freedom 

spring-mass system to demonstrate the capabilities 

of the novel framework in Section 4. Section 5 

presents the conclusions and perspectives. 

2. Diffusion Models 
Diffusion models are generative models that take 

influence from thermodynamic diffusion 

processes (Sohl-Dickstein et al. 2015). These 

models have proven to be remarkably effective 

in many fields such as computer vision, audio 

generation, and text generation (Chen et al. 

2024), etc. The diffusion model consists of a 

forward process and a backward process. The 

fundamental idea is to represent the process of 

reverse generation as the opposite of a forward 

diffusion process that turns data into noise, as 

illustrated in Fig 1. 
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Fig. 1. Schematic of forward and backward process in 

diffusion models. 

2.1.1 Forward Diffusion Process 
In the forward diffusion process, a known 

distribution  is converted into a pure noise 

distribution  by adding Gaussian noise 

incrementally over  Markov chains (i.e., time 

steps). Thus, the forward diffusion process can 

be expressed mathematically as follows Eq. (1): 

( | ) = ; 1 , (1) 

where  are the variance schedule parameters of 

the noise added at each step bounded by 

[0,1], which normally starts from a relatively 

small value and increases gradually;  refers to 

each time step; and ~ ( ) is a sample from 

the known data distribution initially. The term  

and  denote normal distribution and identity 

matrix, respectively. 
Since the forward diffusion process 

consists of a series of Markov chains, the joint 

distribution that represents the sequence of 

transformation from  to  can be written as 

Eq. (2): 

( | ) = ; 1 , (2) 

The above equation is then reparametrised 

by a parameter  as shown in Eq. (3), 

= 1 (3) 

and the cumulative product is then calculated as, 

= (4) 

Therefore, Eq. (2) can be rewritten as Eq. 

(5) by substituting Eq. (3) and Eq. (4) into it. 

( | ) = ; , (1 ) (5) 

Let a random noise ~ (0, ), the 

transitional  at any time step can be computed 

as shown in Eq. (6). 

= + 1 (6) 

Hence, the initial data is corrupted by 

adding a series of Gaussian noise incrementally 

and each step is conditional on the previous step. 

2.1.2 Reverse Diffusion Process 
The reverse diffusion process is envisioned as an 

iterative denoising sequence that recovers the 

initial distribution  once it is diffused from the 

pure noise . The reverse is also a Markov 

chain process that estimates the previous latent 

variable  from the current noisy state . 

Each step of the reverse process can be 

expressed mathematically as Eq. (7). 

( | ) = ; ( , ), ( , ) (7) 

where  represents the parameters of the 

diffusion model; ( ) and ( ) denote the 

mean and covariance matrix of the transitional 

data at each time step to be estimated during 

training.  

The reverse process can also be expressed 

as the inverse of the forward process as shown in 

Eq. (8), which makes each step computable. 

( | , ) = ; ( , ), (8) 

where ( , ) = +
( )

, 

and = . 

2.1.3 Training Process 
Similar to the Variational Autoencoders (VAEs), 

the diffusion models are trained by optimising 

the variational lower bound (VLB) on the 

negative log-likelihood function. 

= [ log ( )] log
( : )

( : | )
 

= log ( ) log
( | )

( | )
(9) 

The loss function in Eq. (9) can be further 

simplified into Eq. (10) by using the Kullback–

Leibler divergences between the transitional 

distributions at each time step of the diffusion 

process: 

= ( | )|| ( ) +

( | , )|| ( | ) log ( | )

In practice, only the noise added and 

removed at each time step is adopted to construct 

the loss function. Thus, the objective function 

becomes to calculate the MSE between true 

noise  and model-predicted noise . 

= , , [ ( , ) ] (11) 

The optimal values for model parameters  

can be obtained through backpropagation and 

stochastic gradient descent. After training, the 
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target data are generated by generating a sample 

from the noise distribution ~ (0, I) and 

performing the learned reverse diffusion 

progress. 

=
1 1

1
( , ) + (12) 

where ~ (0,1) is the predicted noise 

generated by the trained model and  refers to 

the standard deviation value. 

3. Stochastic Model Updating with Diffusion 
Models 

Stochastic model updating is the technique for 

refining computational models of physical 

systems considering the existence of 

uncertainties from both measurements and model 

parameters and inherent variability. In the 

conventional Bayesian model updating approach, 

the posterior distribution is derived from 

evaluating the likelihood function and the prior 

distribution, which could be expensive. On the 

contrary, the evaluation of the likelihood 

function and elaborate sampling process can be 

omitted in the diffusion model-based stochastic 

model updating. 

In the diffusion model-based model 

updating framework, the input data are corrupted 

into the latent space (pure noise) and then the 

denoising process is guided by the condition, 

which is summarised by the feature extractor 

from the observation data. A well-designed 

neural network is adopted in the denoising 

process to predict the noise to be removed. A  

schematic diagram of the diffusion model-based 

model updating framework is shown in Fig 2. 

Thus, in the training phase, the training 

dataset includes the input data samples and the 

corresponding output data. The training process 

is carried out by adjusting the predicted noise in 

the denoising process in agreement with the 

added noise in the forward process. The well-

trained model is capable of conditional input 

data generation by giving observation data to 

accomplish the model updating task. 

 

Fig. 2. Diffusion model-based model updating. 

The posterior distribution of the parameter 

of interest is generated by a well-trained 

diffusion model given the true observation data 

as the condition. In the training process, both the 

input and output data are embedded as training 

data. Thus, the forward diffusion process 

introduced before turns into Eq. (13), where the 

parameter  refers to the condition (output data 

in this case). 

( | , ) = ; 1 , (13) 

The forward process is not affected due to 

the involvement of the condition, but the 

conditional information is brought in (Dhariwal 

and Nichol 2021). For the reverse process, the 

joint distribution is written as Eq. (14). 

( | , ) = ( ) ( | , ) (14) 

The objective function (Eq. (15)) is 

established to measure the differences between 

the predicted noise and the true noise with the 

condition of observation data. 

= [ ( , , ) ] (15) 

4. Case Study: 3-DOF Spring-Mass System 

In this study, a classic 3-degree-of-freedom 

spring-mass system (shown in Fig. 3) is 

employed as a simulation-based case study for 

stochastic model updating by utilising the 

diffusion model-based model updating method 

introduced before. All the springs in the system 

are assumed to follow the linear elasticity 

assumption. The three stiffness parameters , 

, and  and the three masses ,  and  

are set to be constant variables and do not need 

update, the values are denoted in Table 1. The 

other three stiffness parameters , , and  

are random variables with uncertainty to be 
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calibrated in this example. The three natural 

frequencies  , and  are the quantities of 

interest whose uncertainties are controlled by the 

uncertain input parameters.  

 

Fig. 3. 3-DOF spring-mass system. 

The parameters of interest ( - ) are 

assumed to follow a uniform prior distribution, 

and the target distributions are determined as 

Gaussian distributions with various means and 

standard deviations, as illustrated in Table. 1.  

The training dataset is obtained by 

generating input samples from the prior 

distribution and collecting the corresponding 

model output. The synthetic observation data is 

derived from the output obtained by sampling 

input parameters from the target distribution. 

This model updating task is basically to validate 

if the distribution of input parameters generated 

by the diffusion model, taking the synthetic 

observation data as the condition, is in 

agreement with the target distribution. 

Table 1. Uncertain characteristics of the 3-DOF 

system. 

Parameter 
Prior 

Distribution 
Target Distribution 

 (3.0,7.0) ( = 4.0, = 0.3) 

 (3.0,7.0) ( = 5.0, = 0.1) 

 (3.0,7.0) ( = 6.0, = 0.2) 

 

 

Constant variables do not need update 

= = = 5 / , 
= 0.7 , = 0.5 , =

0.3 . 

The deep neural network for denoising 

process is designed as a fully connected neural 

network (FCNN). The training dataset consists 

of 10,000 sets of samples generated from the 

prior distribution and their corresponding natural 

frequencies. In the training process, the Adam 

optimiser is selected with a learning rate of 4e-4. 

The loss function is calculated as the MSE 

between the predicted noise and the generated 

random noise at each time step. The model is 

trained until the loss converges to a relatively 

small value and remains volatile within a 

reasonable interval.  

In the reverse sampling process, a total of 

1,000 sets of samples from the Gaussian noise, 

together with 1,000 sets of observation data, the 

natural frequencies, are generated by taking the 

input parameters sampled from the target 

distribution. Thus, a total of 1,000 sets of 

predicted data points were generated, 

constituting the posterior distribution of the 

model updating. The posterior distribution of the 

stochastic model updating using the diffusion 

model is shown in Fig. 4 below, with the target 

distribution for validation. 

  

(a)  (b)  

 

 

(c)   

Fig. 4. Posterior distribution for three stiffness 

parameters (a) , (b) , and (c) . 

According to the model updating results, all 

three parameters are well calibrated as the 

posterior distribution PDFs are all in good 

agreement with the target distribution PDFs. Not 

only the mean values but also the standard 

deviations of the calibrated parameters match the 

target values closely. The model updating 

problem is successfully solved by the diffusion 

model-based model updating framework. This 

result makes the diffusion model-based model 

updating a promising novel alternative to 

traditional Bayesian model updating framework. 
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5. Conclusion 

In this study, the feasibility of the 

implementation of the diffusion model-based 

approach to the stochastic model updating 

problem is proven. Distinguishing from 

traditional model updating methods, the 

diffusion model-based approach can bypass the 

complexity of investigating the likelihood 

function and the computationally expensive 

sampling algorithms. Different from developing 

novel surrogate models using neural networks, 

the diffusion model-based model updating 

method can substitute for the conventional 

approach. The diffusion model-based stochastic 

model updating leverages the flexibility of deep 

learning models and the capability of high-

dimensional or time-series data. Compared to 

other deep generative models, the generation 

process of the diffusion models is probabilistic, 

so the generation results might vary even with 

the same condition, but it can perform accurate 

predictions based on distributions. 

In conclusion, this work proposed a novel 

stochastic model updating method on the basis of 

the popular diffusion models that bridge the gap 

between deep generative models and stochastic 

model updating problems after the other models 

(VAEs, GANs, cINNs) have all been utilised in 

the model updating. The diffusion model-based 

stochastic model updating has the potential to be 

practical in high-dimensional and non-linear 

spaces. 

Reference 
Beck, J. L., and L. S. Katafygiotis. 1998. 

‘Updating Models and Their 

Uncertainties. I: Bayesian Statistical 

Framework’. Journal of Engineering 
Mechanics 124 (4): 455–61. 

https://doi.org/10.1061/(ASCE)0733-

9399(1998)124:4(455). 

Bi, Sifeng, Michael Beer, Scott Cogan, and John 

Mottershead. 2023. ‘Stochastic Model 

Updating with Uncertainty 

Quantification: An Overview and 

Tutorial’. Mechanical Systems and 
Signal Processing 204 

(December):110784. 

https://doi.org/10.1016/j.ymssp.2023.11

0784. 

Chen, Minshuo, Song Mei, Jianqing Fan, and 

Mengdi Wang. 2024. ‘An Overview of 

Diffusion Models: Applications, Guided 

Generation, Statistical Rates and 

Optimization’. arXiv. 

https://doi.org/10.48550/arXiv.2404.07

771. 

Dhariwal, Prafulla, and Alex Nichol. 2021. 

‘Diffusion Models Beat GANs on 

Image Synthesis’. arXiv. 

https://doi.org/10.48550/arXiv.2105.05

233. 

Ho, Jonathan, Ajay Jain, and Pieter Abbeel. 

2020. ‘Denoising Diffusion 

Probabilistic Models’. In Advances in 
Neural Information Processing Systems, 

33:6840–51. Curran Associates, Inc. 

https://proceedings.neurips.cc/paper/20

20/hash/4c5bcfec8584af0d967f1ab1017

9ca4b-Abstract.html. 

Lee, Sangwon, Taro Yaoyama, Masaru Kitahara, 

and Tatsuya Itoi. 2024. ‘Latent Space-

Based Stochastic Model Updating’. 

arXiv. 

https://doi.org/10.48550/arXiv.2410.03

150. 

Mottershead, J.E., C. Mares, S. James, and M.I. 

Friswell. 2006. ‘Stochastic Model 

Updating: Part 2—Application to a Set 

of Physical Structures’. Mechanical 
Systems and Signal Processing 20 (8): 

2171–85. 

https://doi.org/10.1016/j.ymssp.2005.06

.007. 

Mottershead, John E., Michael Link, and 

Michael I. Friswell. 2011. ‘The 

Sensitivity Method in Finite Element 

Model Updating: A Tutorial’. 

Mechanical Systems and Signal 
Processing 25 (7): 2275–96. 

https://doi.org/10.1016/j.ymssp.2010.10

.012. 

Sohl-Dickstein, Jascha, Eric A. Weiss, Niru 

Maheswaranathan, and Surya Ganguli. 

2015. ‘Deep Unsupervised Learning 

Using Nonequilibrium 

Thermodynamics’. arXiv. 

https://doi.org/10.48550/arXiv.1503.03

585. 

Yuan, Zi-Qing, Yu Xin, Zuo-Cai Wang, Ya-Jie 

Ding, Jun Wang, and Dong-Hui Wang. 

2023. ‘Structural Nonlinear Model 



162 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Updating Based on an Improved 

Generative Adversarial Network’. 

Structural Control and Health 
Monitoring 2023 (1): 9278389. 

https://doi.org/10.1155/2023/9278389. 

Zeng, Jice, Michael D. Todd, and Zhen Hu. 

2023. ‘Probabilistic Damage Detection 

Using a New Likelihood-Free Bayesian 

Inference Method’. Journal of Civil 
Structural Health Monitoring 13 (2): 

319–41. https://doi.org/10.1007/s13349-

022-00638-5. 

 

 

 

 

 

 


