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Engineering disciplines often rely on extensive simulations to ensure that structures are designed to withstand
harsh conditions, while avoiding over-engineering for unlikely scenarios. Assessments such as Serviceability Limit
State (SLS) involve evaluating weather events, including estimating loads not expected to be exceeded more
than a specified number of times (e.g., 100) throughout the structure’s design lifetime. Although physics-based
simulations provide robust and detailed insights, they are computationally expensive, making it challenging to
generate statistically valid representations of a wide range of weather conditions.
To address these challenges, we propose an approach using Gaussian Process (GP) surrogate models trained on a
limited set of simulation outputs to directly generate the structural response distribution. We apply this method to
an SLS assessment for estimating the order statistics Y100, representing the 100th highest response, of a structure
exposed to 25 years of historical weather observations. Our results indicate that the GP surrogate models provide
comparable results to full simulations but at a fraction of the computational cost.
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1. Introduction

Accurate estimation of structural responses under
diverse weather conditions is influenced by both
the variability of the weather environment (e.g.,
waves, wind, currents) and the variability of the
structural response in a given random weather
state. For precise long-term estimation, it is essen-
tial to consider both these variabilities.

Order statistics, which involve analyzing spe-
cific ranked values within a dataset, are par-
ticularly useful in this context. These statistics
can involve extreme values like the maximum or
the minimum, as well as other values such as
the 100th largest response. By examining these
ranked values, order statistics provide valuable in-
sights into the behavior of structures under various
conditions, which is crucial for both reliability and
serviceability assessments.

While traditional physics-based simulation

methods can calculate order statistics, this is of-
ten impractical due to the computational expense.
This is especially true when dealing with long
time periods, such as 25 or 100 years, which are
typically used in the design of structures (Wang
et al., 2022).

A common practice in the engineering field is
thus to use surrogate models, which approximate
the results of high-fidelity simulations. These
models, such as Gaussian Process (GP) models,
can achieve similar accuracy with significantly re-
duced computational cost (Samadian et al., 2024).

In this paper, we propose a method for creat-
ing GP-based surrogate models suitable for order
statistics calculation. Our approach assumes that
the structural characteristics remain constant dur-
ing the studied timeframe, which is a common
simplification in practical structural response sim-
ulations (DNV, 2019).

Our method introduces several aspects that dis-
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tinguish it from existing methods. Specifically,
we do not use surrogate models to estimate the
structural responses directly. Instead, we estimate
the parameters of the structural response distri-
bution. This allows us to generate samples from
the predicted distribution, enabling efficient cal-
culation of order statistics without the need for
extensive simulations. Additionally, our approach
is designed to work with stochastic simulators
where both the responses and the number of data
points returned vary stochastically.

Our method is particularly valuable for Ser-
viceability Limit State (SLS) calculations (DNV,
2021), where the evaluation of structural re-
sponses under a wide range of weather con-
ditions is crucial but difficult to achieve with
traditional methods like environmental contours
(Vanem et al., 2020).

To demonstrate our method, we conducted an
SLS assessment estimating the 100th largest re-
sponse (Y100) for a structure exposed to 25-years
worth of historical weather observations. This
proof-of-concept uses a simplified stochastic sim-
ulation model that balances realistic dynamics
and computational efficiency. We benchmark our
method against a brute-force approach that calcu-
lates order statistics directly using the simulator.
Our method showed comparable results at a frac-
tion of the computational cost.

2. Problem Statement and Approach

The specific problem addressed in this paper is the
need for an efficient and accurate method to esti-
mate the order statistics, Yk, representing the kth

largest response within a selected time interval.
For systems where the response is stochastic, this
is challenging using traditional methods due to the
inherent variability of the responses, which would
require a high number of simulations to capture
accurately.

Our proposed method maps weather data inputs
to predicted distributions of structural responses
using a surrogate model, and then generates data
to mimic the simulator output. This enables ef-
ficient estimation of selected order statistics, ef-
fectively bypassing the need for generating the
structural responses using a simulator.

Our approach is inspired by Winter et al.
(2025), which uses a Gaussian Process to model
the parameters of the output distribution. Here,
we extend this method by not only modeling the
distributional parameters, but also generating real-
izations of the predicted structural response from
the predictive distributions.

The simulator is considered to be a stochastic
black-box function, represented by

sim(x) → [R1, . . . , RL|x],

where each Ri represents the response within a
certain time interval, as explained in further detail
in section 3.1.1. The number of values returned
by the simulator, L|x, is a random variable con-
ditional on x. This means that both the responses
Ri and the count L are stochastic outputs of the
simulator.

We assume outputs of the simulator at a point
x are samples from a distribution R|θR(x), gov-
erned by the underlying physics of the system,
where θR(x) are the parameters of the distribution.
For example, if R is a Gumbel distribution, then
θR(x) = (location(x), scale(x)). In other words,
we assume a fixed distribution type with unique
parametrization at each x.

Producing the surrogate models estimate of a
single sim(x) run works as follows:

(1) Use the Gaussian Process to map x → θR, L

(2) Create the distribution R using the parameters
θR.

(3) Generate a sample from L|x, then generate L

samples from distribution R, representing the
output of the simulation model.

While this mapping could be performed with
many different models, using a Gaussian Process
allows us to quantify the uncertainty in our esti-
mation, as well as propagating uncertainty about
the true surrogate model to our estimates of the
order statistics Yk.

The GP model assumes that the function map-
ping inputs to outputs is a realization of a Gaus-
sian process, defined by its mean function and co-
variance function, which encodes certain assump-
tions about the function we aim to predict, such as
smoothness properties or periodicity. In this study,
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we use the Matérn covariance function, which
is suitable for modeling functions with varying
smoothness (Williams and Rasmussen, 2006).

Further details on the simulation model, surro-
gate model, and quantities of interest calculation,
are covered in the following sections.

3. Methods

This section details the application of our ap-
proach to a proof-of-concept use-case.

3.1. Simulation model overview

The simulator used in this study takes weather
observations as input, specifically significant wave
height, Hs, peak wave period Tp, and wind speed
Vw, to calculate the structural response of a marine
structure. We use real weather observations col-
lected from 1979 to 2015, spanning slightly over
36 years. Each observation represents the average
conditions experienced over one hour.

The simulation involves several key steps,
which are outlined below for completeness. How-
ever, note that the method presented in this paper
does not utilize any of these internal details and
treats the simulator as a stochastic black-box func-
tion.

3.1.1. From weather data to structural
responses and simulator output

From the observed weather data, a wave spec-
trum is generated using the Torsethaugen model
(Torsethaugen, 1996). Since the weather data rep-
resent average values measured over one hour,
multiple wave spectrum realizations can satisfy
these inputs, introducing stochasticity into the
simulation model. The response spectrum of the
structure is then calculated by combining this
wave spectrum with the structure’s transfer func-
tion (Bendat and Piersol, 2011). The response
spectrum is then transformed into a time-domain
series using an inverse Fourier transform (Op-
penheim and Schafer, 2009). The wind-induced
moment is calculated using the wind speed and a
predefined thrust curve. It is then combined with
the wave-induced bending moments to determine
the response of the structure.

The time series of the structural response is
then analyzed to identify up-crossings and peak

Fig. 1. Example output from simulation model: array
of L peak values, yout

values (Ochi, 1998). As illustrated in Figure 1, up-
crossings occur when the response exceeds a spec-
ified threshold (the mean response over the time
segment in this case), and the highest response
(peak value) within each up-crossing interval is
recorded. The final output of the simulation model
is then an array of L peak responses.

3.2. Calculating order statistics

Our Quantity of Interest (Q.O.I) is the distribution
of the 100th highest response, Y100, across the se-
lected time interval, here 25 years. Each combina-
tion of input variables, {Hs, Tp, Vw}, corresponds
to one hour of observed weather data. Running the
simulator on an input results in an array of L peak
responses, as explained in the previous section.

To produce a brute force calculation of Y100,
we first create an empty list (top100) to store
the overall 100 largest responses seen in the 25
year period. We then run the simulator on the
25 years worth of input samples. Each time the
simulator runs we update top100 if any of the
responses created in that run are large enough to
warrant inclusion. Once all the data has been run,
the 100th largest value in top100 is extracted to
provide a realization of Y100.

Given that each data point represents one hour,
the simulation count becomes N = 24 × 365 ×
25 = 219.000. Since the simulator output is
stochastic, and Y100 is a derived quantity from this
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Fig. 2. Estimating the expectation value of Y100 as the
Q.O.I

process, we perform multiple realizations (M =

100) to estimate the distribution of possible val-
ues, as illustrated in Figure 2. For a time period
of 25 years, this results in N × M ≈ 22 mil-
lion simulation runs. Our simplified simulator is
specifically designed for this to be feasible, but
real-world simulators are typically far too slow or
expensive to run this many times.

3.3. Generating training data for the
surrogate model

To generate training data for the surrogate model,
we first define the input variable ranges based on
the historical weather observations. We then use
uniform random sampling to draw N = 5000

points within this range, and for each set of input
variables, we generate M samples from the simu-
lation model to capture its stochastic nature. The
relatively high number of data points represents a
best case scenario for training the GP models. For
a more realistic setup with a computationally ex-
pensive simulation model, we could make use of
Design of Experiments (also referred to as active
learning) to iteratively build a dataset in a more
efficient way (Moustapha et al., 2022).

For each data point we fit a distribution to each
of the M runs, as illustrated in Figure 3. We then
have M estimates of the distribution parameters
for that point. We calculate the mean and standard
deviation over the M parameter estimates. We
repeat this process for three different distributions:
Gumbel, Rayleigh, and Weibull. The standard de-
viation quantifies the noise level, or variability, of
the generated data due to the stochasticity of the
simulations. The resulting dataset, as illustrated
in Table 1, is then split into a training set (80%)
and a test set (20%) used to evaluate the model

Fig. 3. Fitting the output from the simulation model to
a Gumbel distribution.

predictions
The choice of these distributions is justified

by their relevance and applicability to modeling
environmental and structural response data. The
Gumbel distribution is commonly used to model
the distribution of extreme values, (Coles, 2001)
which may make it suitable for modeling the
structural responses that may occur under severe
weather conditions. The Rayleigh distribution is
often used to model wave heights and wind speeds
in oceanographic and meteorological studies (Liu
and Pinho, 2012). It may thus be appropriate for
representing the distribution of responses that are
influenced by the combined effect of multiple in-
dependent factors, which is characteristic of wave
and wind data. The Weibull distribution is versa-
tile and can model a wide range of data types,
including weather data (Tucker and Pitt, 2001). Its
flexibility may make it suitable for capturing the

Table 1. Generated dataset for training the GP mod-
els, where the weather observations {Hs, Tp, Vw}
represent the input features and the distributional pa-
rameters represent the target variables.

Hs Tp Vw μ σμ β σβ ...

3.2 11.3 1.2 75371 891 20983 530 ...
7.4 9.6 16.5 236624 1505 46570 1066 ...

: : : : : : : ...
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Fig. 4. From point predictions to multiple realizations. a) Single prediction and the corresponding generated
data. b) Sampling multiple realizations from the GP’s predictive distribution. c) Generating data using multiple
realizations to estimate the uncertainty in the predicted responses.

variability in structural responses under diverse
weather conditions.

Testing a selection of different distributions is
essential because it is not straightforward to de-
cide a priori which distribution best maps the data.
This also evaluates the sensitivity of our method to
the choice of distribution, which is harder to assess
in more complex cases where the true output from
the simulator is not available for direct compari-
son.

3.4. Generating the structural response
spectrum using GP models

3.4.1. Training the models

Based on the dataset from the previous section,
we train a series of GP models to predict the
distribution parameters directly from the weather
observations. When training the GP models, the
standard deviations are used to quantify the noise
level in the training data, capturing the inherent
stochasticity of the simulator output. We use a
separate model for each target variable. For exam-
ple, Model 1 predicts (μ, σμ), Model 2 predicts
(β, σβ), etc.

μ, σμ = GPμ({Hs, Tp, Vw}) (1)

3.4.2. Generating the predicted response
distribution

For each combination of {Hs, Tp, Vw}, we first
predict the distribution parameters, e.g. μ and σμ,
and the length L of the response vector. We then

Fig. 5. Generating structural response data from pre-
dicted distribution.

generate L data points from this distribution, as
illustrated in Figure 5. A key advantage of using
GPs as surrogate models is their ability to estimate
the uncertainty of their predictions. This uncer-
tainty can then be propagated to assess its impact
on the generated responses. Figure 4 illustrates
this process.

Each time the surrogate is run we sample a
set of parameters from the GP’s predictive distri-
bution. These sampled parameters are then used
to generate the structural responses. This method
effectively transfers uncertainty from the GP pre-
dictions to the generated output data, capturing the
variability in the structural response.

4. Results and Discussion

For the partitioned test set, we predicted the distri-
butional parameters and compared them with the
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true values to check the quality of fit. An example
of the predicted parameters for the Gumbel distri-
bution is illustrated in Figure 6, where the error
bars indicate the standard deviation. The length of
the response vector, L, can be predicted directly,
as it follows a Gaussian distribution (see inset for
sampled distribution of L in Figure 6c).

We estimate the Q.O.I using the surrogate
model by running the same brute force calcula-
tion process described in Section 3.2, but making
predictions with the surrogate rather than the sim-
ulator. Our results showed that responses gener-
ated from the Rayleigh and Weibull distributions
closely matched the true output from the simu-
lator. In contrast, the Gumbel distribution tends
to overestimate the larger responses due to its
heavier tails. The Rayleigh and Weibull distribu-
tions thus appear better suited for modeling the
responses from this simulator because of their
lighter tails and greater flexibility in fitting a wide
range of data.

4.1. Estimation of Y100 over a 25 year
period

The dataset spanning 25 years of historical
weather observations covers a wide range of
weather conditions, providing a solid basis for
evaluation. Based on the results from the previous
section, we restricted our evaluation to data gener-
ated using the Weibull and Rayleigh distributions,
as the Gumbel distribution showed unsatisfactory
performance.

We iterated through all
observations of {Hs, Tp, Vw} and sampled M =

100 realizations from the GP’s predictive distri-
bution. We then compared the generated output
from the GP models with the responses computed
directly using the simulation model. Also here, we
performed M = 100 realizations for each set of
weather observations to account for the inherent
stochastic nature of the simulations. These results
are illustrated in Figure 7, where we compare the
top 100 responses, Yk, for the Rayleigh, Weibull,
and simulator outputs.

In our case, we are explicitly interested in the
100th highest response i.e., Y100. To examine this
quantity in greater detail, we plot a histogram

Fig. 6. Examples of predicted parameters for the
Gumbel distribution, validated on hold-out test set. a)
Real. vs predicted μ. b) Real vs. predicted β. c) Real
vs. predicted L. Inset: illustrating distribution of length
parameter.

of Y100, comparing the GP predictions with the
simulator output. These results are illustrated in
Figure 8, indicating that the structural responses
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Fig. 7. Estimated values for the kth largest responses,
Yk, with 95% confidence intervals for both GP pre-
dictions (shown as error bars) and simulator output
(represented by the shaded region).

generated from the GP models align well with the
output from the simulation model. The Weibull re-
sults match the true distribution more closely, but
provide a non-conservative estimate. In contrast
the Rayleigh results are conservative, producing
results similar to Y80 estimated by the simulator.
The difference in results is not sufficiently large
to draw definitive conclusions about the suitability
of the distributions. In practice, when using this
method without the true simulator results avail-
able for direct comparison, engineers could apply
a variety of reasonable distributions to the prob-
lem and select one of the more conservative Q.O.I
estimates.

The choice of distribution is an influential de-
cision in this method, and further work should
be undertaken to provide guidelines for selecting
appropriate distributions a priori.

5. Conclusions

In summary, our study demonstrates that GP sur-
rogate models offer a promising approach for ef-
ficient and accurate estimation of order statistics.
This method is especially beneficial for calculat-
ing key order statistics and performing SLS as-
sessments in stochastic systems, where traditional
simulation methods are impractical.

Our proof-of-concept use-case was based on a
simplified simulation model. However, given the
positive results, we believe this method is worth
exploring further. Future work should focus on

Fig. 8. Histogram of Y100, as estimated from GPs vs.
simulation model.

applying this method to more complex simulation
models and real-world datasets to validate its ef-
fectiveness and generalizability. Additionally, ex-
ploring the integration of Design of Experiments
(DOE) techniques to optimize the training data
generation process could further enhance the ef-
ficiency and accuracy of the GP models.

If proven successful, this method would allow
for a more detailed statistical representation of
weather-induced structural responses, leading to
better-informed design decisions for structures ex-
posed to varying weather conditions.
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