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The NASA-DNV challenge problem aims to develop methodologies for Uncertainty Quantification (UQ) in safety-
critical and high-consequence systems with sparse or expensive data. The challenge is designed to be discipline-
independent while capturing the complexities of real-world engineered systems. It consists of two key problems: (1)
quantifying both aleatory and epistemic uncertainties by integrating computational models with real system data,
and (2) optimizing control variables to balance performance and risk. Given the presence of conflicting objectives in
both problems, multi-objective optimization techniques provide a promising approach for simultaneously addressing
these trade-offs. This paper explores the role of multi-objective optimization in UQ and control optimization within
the challenge framework.
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1. Introduction

The NASA-DNV challenge problem (Agrell et al.,
2024) is designed to explore methodologies for
Uncertainty Quantification (UQ) in safety-critical
and high-consequence systems where data is
sparse or expensive to obtain. The problem for-
mulation is intentionally discipline-independent
but represents the inherent complexities of real-
world engineered systems. The challenge focuses
on developing robust methods that can accurately
assess uncertainties in system performance under
a wide range of operating conditions. The chal-
lenge problem consists of two parts. On the one
hand, problem 1 is about modeling (quantifying)
uncertainty aleatory and epistemic, by using the
computational model together with data from the
real system. On the other hand, problem 2 is about

optimizing the control variables for the system,
balancing performance and risk.

In both instances, conflicting objectives arise.
When multiple objectives appear, multi-objective
optimization techniques can be an appealing strat-
egy due to their capability to simultaneously op-
timize conflicting objectives. This process leads
to the approximation of the so-called Pareto front
(Miettinen, 1999), where all solutions are Pareto
optimal. The analyst (or designer) must then se-
lect the most preferable solution for the problem
at hand, with the desired trade-off. Within this
context, it could mean the possibility of analyzing
different control solutions, for example, and ana-
lyzing the trade-off between performance and risk
probabilities of them.

Given that, the motivation of this paper is to

367



368 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

answer the following question: how could multi-
objective optimization techniques could be of as-
sistance for UM quantification and for design
optimization? Therefore, we propose a multi-
objective optimization approach to address the
challenge of modeling uncertainty and optimizing
control variables in complex systems.

The rest of this work is as follows: in Section
2 a brief theoretical framework on multi-objective
optimization techniques is given, with a contex-
tual framework about its usability for modeling
and control design. In Section 3 the proposal of
this work is stated, with the tools and methods
to be used. Results and discussions (still in de-
velopment) are commented on in Section 4 and
Section 5 presents the conclusions of this work (in
development).

2. Theoretical framework

Multi-objective optimization can be defined,
roughly speaking, as the simultaneous optimiza-
tion of more than one objective function, search-
ing for a better solution to a mathematical prob-
lem. In general, a multi-objective problem, with-
out loss of generality, can be defined as follows:

min
θ

J (θ) = [J1 (θ) , . . . , Jm (θ)] (1)

subject to:

g (θ) ≤ 0

h (θ) = 0 (2)

θi ≤ θi ≤ θi, i = [1, . . . , n]

where θ ∈ � is the decision vector, J(θ) is the
objective vector, g(θ) and h(θ) are, respectively,
the inequality and equality constraints and θi ≤
θi ≤ θi are the boundaries of the decision space
for the variable θ (Miettinen, 1999).

It is impossible to have a single solution that
is better for all objectives, since improving one
objective can worsen a second one. Therefore, a
set of solutions classified as optimal is obtained;
this set is defined as the Pareto front; each solution
of this set defines an objective vector in the Pareto
front. All solutions in the Pareto front are con-
sidered nondominated solutions; this definition is
explained below, and it is depicted in Figure 1:

Pareto Dominance: Given two design objec-
tive vectors J(θ1), J(θ2), objective vector J(θ1)
dominates J(θ2), iif:

Ji(θ
1) ≤ Ji(θ

2) ∀ i ∈ [1, 2, ..., n] and

Jj(θ
1) < Jj(θ

2) ∃ j ∈ [1, 2, ..., n] (3)

Fig. 1. Pareto optimality and dominance concepts
(min-min problem) for design objective y1(x), y2(x)
for decision variables x. (Carrau et al., 2017).

In order to have success employing such ideas
in engineering design, at least three fundamental
steps (Reynoso Meza et al., 2017) must be carried
out:

• Multi-Objective Problem (MOP) State-
ment: In this step, the parametric model,
the cost function, the design concept
(decision variables), and the constraints
must be defined.

• Multi-Objective Optimization (MOO)
Process: This step involves applying a
multi-objective optimization algorithm
to simultaneously optimize all design ob-
jectives defined in the previous step. As
a result, an approximation of the Pareto
front is obtained.

• Multi-Criteria De-
cision Making (MCDM) Analysis : This
step involves analyzing and selecting the
most preferable solution from the Pareto
optimal set for implementation.

Next, the proposal to use such techniques in the
NASA-DNV challenge will be presented.
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3. Proposal, tools and methods

Here it is presented the overall pipeline proposal
for the challenge, using Multi-objective Optimiza-
tion Design (MOOD) techniques and Design Sci-
ence Approach (DSA). Firstly, a brief description
of the benchmark is given.

3.1. Benchmark description

The input X contains parameters that describe a
physical structure and its environment. For this
challenge problem, the relevant range of X is
standardized, and we let X ∈ [0, 1]nx . The com-
ponents of X have different characteristics as
follows:

X = [Xa,Xe,Xc] (4)

where:

• Xa ∈ R
na is an aleatory vari-

able whose value varies randomly. For
this challenge, a given vector Xa =

[xa1, xa2].
• Xe ∈ R

ne is the epistemic variable

whose true value X∗
e is unknown. For

this challenge, a given vector Xe =

[xe1, xe2, xe3].
• Xc ∈ R

nc is the control variable whose
value is to be set by the analyst. For
this challenge, a given vector Xc =

[xc1, xc2, xc3]

The objective is on the one hand to quantify
Xa,Xe and on the other hand to determine the
control variable Xc that optimizes system perfor-
mance under uncertainty.

The organizers have provided a model in Mat-
lab to run optimization tests locally and they have
also made available a budget of 10 tests in the real
model. Local optimizations are carried out with
the model provided by the organizers and with
access to the ”real model” to get new data on the
system.

3.2. Overall Methodology

The methodology employed in this work is
based on the multi-objective optimization design

(MOOD) framework previously described (MOP
statement, MOO process, and MCDM analysis).
In particular, MCDM analysis plays a crucial role
in two aspects: first, to provide an estimate of
the model uncertainties and second, to enable the
selection of robust decisions.

At a high level, the Design Science Approach
(DSA) is used to facilitate iterative optimization
cycles. The DSA is a research methodology fo-
cused on the iterative development and evalua-
tion of entities (such as models, algorithms, and
decision-making frameworks) to address complex
real-world problems. Unlike purely descriptive
research methods, DSA emphasizes the creation
of innovative solutions through a cycle of prob-
lem identification and motivation, definition of
objectives for a solution, design and develop-
ment, demonstration, evaluation, and communi-
cation (Peffers et al., 2007). In the context of
this study, the DSA enables a structured refine-
ment of both optimization models and decision-
making processes by integrating new insights ob-
tained from each iteration (Ribeiro and Reynoso-
Meza, 2024). This ensures that the optimization
framework remains adaptable and robust as more
data and experimental results become available.
Similar ideas have previously been explored with
multiobjective optimization techniques in Carrau
et al. (2017); Reynoso-Meza et al. (2019).

Specifically, an initial MOO process is executed
to quantify uncertainty Xa, Xe, followed by the
selection of a probable operating scenario for the
designed system, via MCDM analysis in the ap-
proximated Pareto front. Subsequently, another
MOO is performed to assess the performance of
the control subsystem Xc. The results obtained
are then tested in the original model, and the
collected information is fed back into the process
for a new iteration. This iteration may involve
modifying the design objectives or adjusting the
parametric models used in the optimization.

Next, the MOP, MOO and MCDM for the
NASA-DNV challenge will be explained.

3.3. Multi-objective Problem statement

As previously mentioned, two multi-objective
problems will be stated and their Pareto fronts
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approximated. The first MOP (5) aims to quan-
tify uncertainty through a six-objective multi-
objective identification problem. This MOP
evaluates the probability of a given output
Y (Xa,Xe, X̂c) to belong to the dataset of out-
puts provided by the real model with a fixed X̂c.

max
X̃a,Xe

J
(
X̃a,Xe, X̂c

)
= [L1

(
X̃a,Xe, X̂c

)
,

. . . ,

L6

(
X̃a,Xe, X̂c

)
]

(5)

Where Li

(
Xa,Xe, X̂c

)
is the the log-

likelihood of a candidate solution Ŷi, i ∈
[1, . . . , 6]. X̃a represents the parameters for a
beta distribution to approximate the distribution
of the aleatory variables. The choice of the beta
distribution to model the two aleatory uncer-
tainty variables is justified by its flexibility in
representing a wide range of behaviors over the
[0, 1] interval, from uniform to highly skewed
shapes. Given the absence of prior knowledge
about the true distributions, the beta family pro-
vides a minimal-assumption with an interpretable
and flexible structure to approximate a model of
such uncertainty.

In order to evaluate this likelihood of a given
solution, a non-parametric probability density es-
timation method (KDE), is employed. The design
objective is formulated as the maximization of the
log-likelihood of the solution under the estimated
probability distribution. To achieve this, the initial
step involves utilizing the control vector X̂c =

[0.533, 0.666, 0.500] provided by the challenge
organizers and evaluating it against the available
model data.

The second MOP (6) involves parametric mod-
eling for control. After performing the multi-
criteria decision analysis on the Pareto front ob-
tained in the previous MOP-1, the next step is
to analyze the most probable values for Xa,Xe.
Based on this analysis, the control vector Xc will
be optimized for a specific seed instancea. The

aIt is true that this can lead to a bias in the optimization,
however by performing the optimization on various scenarios

optimization objectives in this case will focus on
the three system outputs Ŷi,i = [1, 2, 3] while
ensuring that the model constraints Ŷi,i = [4, 5, 6]

are satisfied. Following the Pareto front analysis,
an optimal control vector will be selected for im-
plementation in the real system.

max
Xc

J (Xc) = [Perf(Xc),

−V ar(Xc), Ctn(Xc)] (6)

subject to:

0 ≤ xi ≤ 1, i = [6, . . . , 8]

where Per(Xc) is the performance (ad defined
in the challenge) at 95 percentile given 25 scenar-
ios; V ar(Xc) the difference between 5 and 95
percentile of the performance; and Ctn(Xc) the
worst case scenario for the constraints.

3.4. Multi-objective optimization process

The optimization process is carried out using the
spMODEx algorithmb. spMODEx belongs to the
family of spMODE algorithms (Reynoso-Meza
et al., 2014), which have been widely applied
and documented in controller tuning tasks in con-
trol systems (Reynoso-Meza et al., 2022). It is a
population-based algorithm that incorporates the
following key features:

• The core search mechanism of the algo-
rithm is based on the Differential Evolu-
tion (DE) algorithm (Pant et al., 2020),
which is widely documented in the sci-
entific literature for its effectiveness in
population-based optimization.

• To ensure diversity in Pareto front solu-
tions, it employs a spherical coordinate
grid mechanism. This approach guaran-
tees that only one solution is retained
within each sector of the spherical grid,
preventing solution clustering and pro-
moting a well-distributed front.

we hope to adequately capture the variability in the response.
bAvailable at https://www.mathworks.com/
matlabcentral/fileexchange/65145.
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• To enhance the relevance of the solu-
tions, it integrates a preference-based se-
lection mechanism inspired by Physi-
cal Programming techniques (Melachri-
noudis et al., 2005). This allows for a
guided selection of the most pertinent
region of the Pareto front according to
predefined preferences.

3.5. Multi-criteria decision making and
analysis

In both optimization problems, Pareto fronts are
approximated as the result of the multi-objective
optimization process. To facilitate the analysis and
selection of solutions, we employ Parallel Co-
ordinates (Johansson and Forsell, 2015), a well-
documented technique for visualizing multidi-
mensional Pareto fronts.

Parallel Coordinates provide an effective way
to represent high-dimensional data by transform-
ing each multidimensional point into a set of
connected line segments. Formally, let J(θ))

= [J1(θ)), . . . , Jm(θ)] be a solution in the m-
dimensional objective space, where Ji(θ)) repre-
sents the i-th objective function value of a given
solution θ). The projection of this solution in
Parallel Coordinates is defined as:

P (θ) = {(i, Si(θ) | i = 1, 2, . . . ,m}, (7)

where:

• P (θ) represents the transformed repre-
sentation of θ in Parallel Coordinates.

• Each objective Ji(θ) is mapped to a nor-
malized scale Si(θ), given by:

Si(θ) =
Ji(θ)−min

θ∈Θ
Ji(θ)

max
θ∈Θ

Ji(θ)−min
θ∈Θ

Ji(θ)
, (8)

ensuring that all values are normalized
between 0 and 1.

• The transformed solution is plotted by
connecting the points (i, Si(θ)) for all
i sequentially, creating a set of polyline
segments.

4. Results and discussions

The results of applying the ideas presented in
Section 3 to the Challenge are presented below.
They have been divided into two subsections: one
focusing on the quantification of uncertainty, and
the other on the optimization of the device’s per-
formance.

In total, three cycles of Design Science Re-
search were applied to produce the results pre-
sented in this section. The main outcome of the
first cycle was the refinement of the design ob-
jective functions used in the multi-objective prob-
lems. The second cycle focused on the definition
and tuning of the algorithm’s hyperparameters.
The third cycle yielded the final results, which are
presented in the following subsections.

4.1. Result on uncertainty model
quantification

Figure 2 shows the approximated Pareto front ob-
tained for the uncertainty quantification problem.
The magenta dashed lines represent the Pareto
front approximation in parallel coordinates across
the six design objectives. The blue lines indicate
the solutions from the Pareto front that were se-
lected during the decision-making process. The
decision making consisted in evaluating for 100
scenarios the similarity (instead of 25) and apply-
ing a dominance filter.

In Figure 3, the Pareto front is further analyzed
to estimate the uncertainty-related variables in the
model, including both aleatory and epistemic un-
certainty. The figure presents boxplots showing
the range of the variables identified during the
multi-objective optimization. The blue boxplots
correspond to the original Pareto front solutions,
while the red boxplots represent the filtered solu-
tions after the decision-making step.

The first four variables in the plot refer to
the parameters of the Beta distribution function,
which were used to model the aleatory uncer-
tainty. The last three variables are associated with
epistemic uncertainty. These variable ranges were
then used in subsequent analyses.

As the most probable value set, we selected
the solution highlighted in Figure 2, which sac-
rifices similarity with the exchange-related con-
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Fig. 2. Pareto front approximated for uncertainty modeling.

Fig. 3. Uncertainty model extracted from the Pareto front approximation fo Figure 2.

straints in favor of improved performance-related
variables. The selected values for the epistemic

variables (as the most probable) are Xe =

[0.6327, 0.1751, 0.4497], while the intervals for
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each were stated as xe1 ∈ [0.6124, 0.7948],
xe2 ∈ [0.0896, 0.6776], xe3 ∈ [0.3365, 0.5600].
Those values are determined by the maximum
and minimum values of xei, i ∈ [1, 2, 3] of
the approximated Pareto front after the decision-
making step. The variables selected for the beta
distribution for the aleatory variables are X̃a =

[3.1053, 9.0497, 0.3861, 7.1219].

4.2. Results on Control design

Figure 4 presents the results of the performance
optimization process, where the control variables
were treated as decision variables. The uncertainty
model—comprising both aleatory and epistemic
components was defined using the ranges identi-
fied in the previous subsection. For each candi-
date set of control variables, 25 simulations were
executed using random samples of the aleatory
variables to evaluate the performance.

After approximating the Pareto front shown in
Figure 4, a decision-making procedure similar to
the one described in the previous subsection was
applied. The Pareto-optimal solutions were re-
evaluated over 100 uncertainty scenarios, and any
solutions that were found to be dominated under
this more extensive evaluation were discarded.

In the plot, magenta dashed lines represent
the original approximated Pareto front in paral-
lel coordinates, while solid blue lines highlight
the three remaining non-dominated solutions after
filtering. The trade-off between constraint mar-
gin and variability is particularly evident through
the crossing of lines across axes. These three
robust solutions were subsequently evaluated us-
ing the high-fidelity model. Among them, solu-
tion Xc = [0.4828, 0.4970, 0.6601] demonstrated
the best optimization of performance under un-
certainty, and was therefore selected as the final
design solution. Nevertheless, via the Pareto front
approximation analysis, a different design alter-
native could be selected, with a more preferable
balance between performance and risk for a given
mission. This could be handy in incorporating
the experience of decision makers (mission ana-
lysts) to select an alternative fulfilling the desir-
able trade-off. For the selected solution (hereafter
Xc,DM ), the interval of the performance over the

100 scenarios is Perf(Xc,DM ) ∈ [3.35, 10.05].

5. Conclusions

This work presented a multi-objective optimiza-
tion based approach to address the DNV-NASA
benchmark. By applying a structured pipeline
grounded in Design Science Research methodol-
ogy, it was possible to both characterize the uncer-
tainty model and optimize the control variables of
the system. The first stage focused on uncertainty
quantification, while the second tackled perfor-
mance optimization under uncertain conditions.

The methodology proved effective in selecting
robust solutions that balance performance, vari-
ability, and fulfilling constraints. As future work,
we aim to address the remaining challenges of
the benchmark, as the present study focused only
on the two problems: those related to uncertainty
modeling and control optimization.
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