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In industrial practice, physical security assessments are increasingly performed using scoring methods. However, 
since scoring methods involve uncertainty, users face challenges in evaluating investment alternatives. While 
quantitative metrics have the advantage over scorings in that precise calculations can be made, their application is 
not as simple and intuitive as simple scorings. From a user's perspective, the key question is how to merge the 
strengths of both metrics to facilitate risk assessment without compromising accuracy. The goal of this paper is to 
formulate requirements for a hybrid metric for assessing physical vulnerability and to demonstrate the applicability 
of the outlined solution approach using a specific use case. In a first step, the problems of scoring are explained 
using the Harnser metric as an example. In a second step, the quantitative metric used to measure the quality of 
scoring is defined. The third step explains how the scoring under consideration can be extended and modified to 
replicate the quantitatively calculated results for all calculation results. In a final step, the proposed adjustment 
approach is demonstrated. Finally, the results are summarized and starting points for further research are identified. 
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1. Introduction 
In recent years, physical security has become a 
major societal and political concern, particularly in 
response to increasing reports of sabotage and 
climate activism targeting critical infrastructure 
(Rucht, 2023). Protecting essential systems from 
physical attack is critical to maintaining the stability 
of key processes and services that underpin modern 
society (Stober, 2024). One of the fundamental tools 
for designing effective security measures is risk 
assessment, which evaluates threats and 
vulnerabilities based on attacker profiles. 

A widely used approach in industrial security 
assessments is scoring, as it provides a 
straightforward way to categorize risks and support 
decision making (Krisper, 2021). However, scoring 
methods introduce a significant degree of 
uncertainty, making it difficult to justify security 
investments or compare different protection 
strategies. Alternatively, quantitative risk 
assessment provides objective, mathematically 

precise risk assessments (Termin et al., 2021). While 
more accurate, these methods often rely on complex 
calculations that are not as intuitive or easily applied 
as scoring-based approaches. 

From a practical perspective, the key question 
is how to combine the strengths of both scoring and 
quantitative approaches into a hybrid metric that 
ensures both usability and analytical robustness. 
This paper builds on previous work by Termin et al. 
(2023) and introduces a refined approach that 
improves scoring-based vulnerability assessments to 
match the accuracy of purely quantitative methods. 
The proposed methodology is demonstrated through 
a concrete use case that illustrates how the hybrid 
metric can be applied to assess the effectiveness of 
security measures for a defined protection barrier. 

By bridging the gap between intuitive scoring 
and precise quantitative evaluation, this approach 
enables a more reliable assessment of security 
investments while maintaining accessibility for 
practitioners. 

3314



3315Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

2. Background  
Scoring metrics are commonly used in physical 
security assessments to evaluate vulnerability 
levels and provide a simplified yet structured 
approach. However, to improve accuracy and 
comparability, a scoring-based metric needs to be 
adapted to a quantitative metric. In this study, we 
use the Harnser metric (Harnser, 2010) as a 
scoring-based approach and compare it to the 
Intervention Capability Metric (ICM) (Lichte et 
al., 2016), which is a quantitative method. 

The Harnser metric assigns scores to three 
key variables: Protection (P), Observation (O), 
and Intervention (I), each of which is scored on a 
scale of 1 to 5 (with 5 being the highest and 1 
being the lowest). The sum of these three scores 
results in a vulnerability score (V) ranging from 3 
to 15 (see Fig. 1).  

Fig. 1. Traditional Harnser scoring. Source: Harnser, 
(2010).  

 
In contrast, the ICM applies probabilistic 

density functions to P, O, and I as inputs and 
derives vulnerability as a discrete value based on 
the time-dependent interaction of these variables 
(see Fig. 2). 

 

Fig. 2. Probabilistic Density Functions (PDF) of the 
Intervention Capability Metric (ICM). Source: Lichte 
et al. (2016). 
 

To enable a meaningful comparison 
between the scoring and quantitative methods, 
Termin et al. (2023) introduced a mapping 
approach that assigns time-based values to each 
P, O, and I score, making them compatible with 
the quantitative model. Since the exact probability 
distribution of scoring-based outcomes is not 
known in advance, the initial scoring range (3-15) 
is extended using assumed probability intervals to 
approximate the expected quantitative outcomes. 

A systematic comparison is then performed 
by evaluating all 125 possible score combinations 
(5 × 5 × 5 permutations) in both the scoring and 
quantitative metrics. The scoring method 
produces probability intervals, while the 
quantitative method produces discrete values. By 
adjusting the assumed probability intervals of the 
scoring model, the results are aligned so that the 
quantitative results fall within or close to the 
corresponding scoring intervals. However, a 
limitation arises because the scoring method only 
generates values between 3 and 15, meaning that 
several different permutations can result in the 
same sum score (e.g., P = 1, O = 2, I = 1 and P = 
2, O = 1, I = 1 both result in a sum score of 4). 

If the scoring system had 125 unique score 
levels, each calculated quantitative value could be 
directly mapped to a unique scoring result, 
making the scoring metric as precise as the 
quantitative method. However, because the 
Harnser metric groups multiple permutations into 
the same sum score, it cannot fully replicate the 
granularity of the quantitative results, i.e. the full 
result space determined by the number of all 
possible permutations (combinations). This raises 
an important methodological question: 

 
How can a scoring metric be designed to 

generate uniquely distinguishable scores that 
correspond one-to-one to all possible 
permutations of the scoring variables? 

 
The key challenge is to determine a 

generalized formula or rule that defines the 
relationship between the number of scoring 
variables, their possible values, and their method 
of combination (e.g., addition, multiplication, or 
weighting). Ideally, the scoring system should be 
structured to produce unambiguous and 
meaningful results that capture the full range of 
possible vulnerability levels while maintaining 
ease of use in security assessments. 
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3. Approach 
The fictitious infrastructure analyzed in this paper 
consists of one threat (T), one barrier (B) with 
attributes P, O, and I, and one asset (A) (see Fig. 
3). The attacker must overcome the barrier to 
reach the asset. 
 

 
Fig. 3. Fictitious infrastructure under investigation. 
 

To develop a scoring metric that produces 
uniquely distinguishable scores, ensuring that 
each permutation of the scoring variables 
corresponds to a distinct result and accurately 
replicates quantitative calculations, a general 
mathematical rule must be defined. Key factors 
that influence this rule include: 

(1) Number of scoring variables: This 
determines the dimensionality of the 
scoring system and represents the key 
security factors being evaluated (e.g., 
protection (P), observation (O), and 
intervention (I)). 

(2) Range of each scoring variable: Each 
variable must have a defined range of 
values (e.g., P, O, and I range from 1 to 
5), which affects the total number of 
possible score permutations. 

(3) Combination Method: The scoring 
variables must be mathematically linked 
in such a way that each combination 
produces a unique and distinguishable 
result. This can be achieved through 
additive, multiplicative, or weighted 
functions, depending on the desired level 
of granularity and the need for a one-to-
one mapping to the quantitative model. 

3.1. General Formula for the Scoring Metric 

Let n represent the number of scoring variables 
(e.g., n = 3 for P, O and I). Each scoring variable 

 takes values from a 
set , where  represents the 
number of possible values for each variable, e. g. 

=  =  = 5 for P, O and I. The total number 
of unique permutations  of the scoring 
variables is given by Eq. (1): 

 

(1) 

For the example where each variable has 
five values (1-5), the number of possible score 
permutations is  125. 
To ensure that each unique combination of 

values leads to a distinct score, a weighted sum 
function is introduced as follows (see Eq. (2)): 

 
(2) 

 where: 

�  are the weighting factors assigned to 
each scoring variable . 

�  is the assigned value of the scoring 
variable. 

The key requirement is that the weights 
must be chosen so that each possible 

combination of scoring variables  
results in a unique score.  

3.2. Ensuring Unique Scores Using an 
Exponential Weighting Scheme 

A practical wat to achieve the uniqueness is by 
assigning exponentially decreasing weights, 
ensuring that no two different combinations 
produce the same score. For n = 3 scoring 
variables, each with (  =  =) five 
possible values, the weightings can be defined as 
follows (see Eq. (3)): 

 

(3) 

For P, O, I with values from 1 to 5, this 
results in the following equation (compare Eq. 
(4)): 

 

 

(4) 

These weights ensure that each combination 
of P, O, and I generate a unique vulnerability 
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score by giving a higher weight to variables 
positioned earlier in the hierarchy. Importantly, 
this weighting does not imply relative importance 
of the variables—it purely serves to differentiate 
outcomes numerically, e.g., the total number of 
possible scores is equal to the number of 
permutations, in this case 125.  

3.3. Example Calculations for Unique Scoring 

Using this scheme presented, each unique 
combination of P, O, and I result in a distinct 
vulnerability score (VS). Example calculations 
(see Eq. (5)): 

For P = 3, O = 4, I = 2:  
       

For P = 5, O = 5, I = 5:  
       

(5) 

 

By applying this approach, the scoring 
system now generates 125 uniquely 
distinguishable vulnerability scores instead of the 
previous range of “3” to “15”. The range of 
possible scores can be seen in Eq. (6): 

Lowest score (P = 1, O = 1, I = 1) 
Combination 1:  

P = 1, O = 1, I = 1: 
       

Highest score (P = 5, O = 5, I = 5) 
Combination 125:  

P = 5, O = 5, I = 5:  
V        

(6) 

 

This transformation ensures a one-to-one 
mapping between the scoring system and the 
number of unique permutations.  

3.4. Establishing a General Rule for Unique 
Scoring Metrics 

The general rule for constructing a Harnser-based 
scoring metric that produces distinct vulnerability 
scores is (Eq. (2)), where the weights  are 
assigned exponentially decreasing values, 
ensuring that the number of unique scores 
matches the number of possible variable 
permutations. For n = 3 and 5 values per variable, 

the rule in Eq. (4) ensures each of the 125 possible 
permutations maps to a unique score. 

3.5. Practical Implications for Physical 
Security Assessment 

This revised scoring system allows for direct 
alignment with quantitative security metrics by 
ensuring that 

(1) Each quantitatively calculated 
vulnerability score (derived as a discrete 
probability) corresponds to a unique 
score in the revised scoring system. 

(2) Each permutation of the scoring 
variables (P, O, I) produces a unique, 
identifiable vulnerability score. 

(3) The scoring method can now be directly 
mapped to quantitative scores, allowing 
for better comparability and risk 
prioritization in security assessments. 

By structuring the scoring metric in this 
way, the approach bridges the gap between 
simple, intuitive scoring models and precise, 
quantitative assessments, addressing a key 
limitation of traditional security scoring 
frameworks. 

4. Demonstration 
To illustrate the proposed approach for adapting 
the Harnser scoring metric, we consider a 
reference security architecture consisting of a 
barrier protecting a critical asset. The barrier is 
characterized by three key security properties: 
Protection (P), Observation (O), and Intervention 
(I). An attacker must successfully bypass the 
barrier to reach the asset, while a defender aims to 
detect and stop the attack before the asset is 
compromised. 
 
4.1. Attack and Defence Dynamics 
 
The system is considered vulnerable if the 
attacker reaches the asset before the defender can 
intervene. The analysis of an attack scenario is 
complete when 

 
(1) The attacker successfully reaches the 

asset (breaches the security barrier), or 
(2) The defender intervenes in time to 

neutralize the threat. 
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To model this interaction, we compare 
Harnser's scoring-based evaluation to the 
Intervention Capability Metric (ICM), a 
quantitative evaluation method. The ICM uses 
probability distributions to model the interaction 
between attack and defense times. Each Harnser 
score (1 to 5) is mapped to a corresponding time 
step, which is then used as input to the ICM. 
 
4.2. Time-based probabilistic mapping in the 
ICM 
 
In the ICM, the time variables associated with 
protection (P), observation (O), and intervention 
(I) are treated as probabilistic density functions 
(PDFs), each characterized by a mean and a 
standard deviation. The behavior of these 
functions follows the expected security 
principles: 

 
(1) Protection (P): A higher P value 

corresponds to increased resistance, i.e., 
a longer time required for an attacker to 
breach the barrier. 

(2) Observation (O): A higher O-score 
corresponds to increased detection 
capability, i.e. the time required for 
observation decreases. 

(3) Intervention (I): A higher I-score 
represents a faster defensive response, 
i.e., the intervention time decreases. 

 
For demonstration purposes, ICM 

Configuration 1 (ICM 1) is defined by assigning 
specific time levels to each Harnser score to 
ensure a structured comparison (see Table 1).  

Table 1. Mapping of Harnser scores to time stages 
in the ICM (Termin et al., 2023). 

P ICM 1 O ICM 1 I ICM 1 

1 μ = 15 
σ = 30 1 μ = 135 

σ = 30 1 μ = 135 
σ = 30 

2 μ = 45 
σ = 30 2 μ = 105 

σ = 30 2 μ = 105 
σ = 30 

3 μ = 75 
σ = 30 3 μ = 75 

σ = 30 3 μ = 75 
σ = 30 

4 μ = 105 
σ = 30 4 μ = 45 

σ = 30 4 μ = 45 
σ = 30 

5 μ = 135 
σ = 30 5 μ = 15 

σ = 30 5 μ = 15 
σ = 30 

 
In the traditional Harnser metric, the scores 

of the three assessment variables (Protection (P), 
Observation (O), and Intervention (I)) are simply 

summed to determine the vulnerability score. In 
the proposed approach, however, the weighted 
formula from equation (4) is applied instead, 
ensuring that each combination of P, O, and I 
result in a unique vulnerability score. 

As described by Termin et al. (2023), the 
125 possible vulnerability scores are initially 
distributed with equal probability (100% total), 
since the exact match between the scoring-based 
results and the quantitative ICM values is not 
known a priori. A ranking approach is used to 
determine an initial probability distribution: 

 
(1) The lowest vulnerability score is 

assigned the highest probability, 
reflecting a more secure system. 

(2) Conversely, the highest vulnerability 
score is assigned the lowest probability, 
indicating a more vulnerable system. 

 
This initial distribution serves as a baseline 

for comparison before adjusting the scoring 
intervals to better match the quantitative results of 
the ICM (see Table 2). 

Table 2. Mapping of Harnser scores to probability 
intervals. 

Harnser 
Score 

Lower Interval 
Limit (LIL) 

Upper Interval 
Limit (UIL) 

Mean 
Value 

31 0.992 1 0.996 

32 0.984 0.992 0.988 

33 0.976 0.984 0.98 

34 0.968 0.976 0.972 

35 0.96 0.968 0.964 

… … … … 

153 0.016 0.024 0.02 

154 0.008 0.016 0.012 

155 0 0.008 0.004 

 
As shown in Table 3, the next step is to 

compute all 125 possible permutations using both 
the scoring-based metric and the quantitative ICM 
for direct comparison. 
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Table 3. Calculation of vulnerability using both 
metrics. 

P O I 
Harnser 
Vuln. 
Score 

LIL UIL Mean 
Value 

ICM 1 
Vuln. 
Value 

1 1 1 31 0.992 1 0.996 0.9999999 

1 1 2 32 0.984 0.992 0.988 0.9999999 

1 1 3 33 0.976 0.984 0.98 0.9999997 

… … … … … … … … 

 
Significant discrepancies between the 

results of the two metrics are evident in Figure 4, 
as illustrated by the plotted calculation results. 
 

 
Fig. 4. Plot of the calculated vulnerabilities using both 
metrics. a) Sorting by permutation, b) Sorting by the 
size of the Harnser vulnerability mean values. Yellow: 
ICM 1 vulnerability values. Else: Harnser vulnerability 
values. 
 

Since each vulnerability score is uniquely 
distinguishable and corresponds to the total 
number of calculated permutations, each score 
can now be mapped directly to the discrete 
vulnerability probability value determined by 
ICM 1 for the corresponding permutation. This 
ensures a one-to-one correspondence between 
Harnser vulnerability scores and ICM 1 
vulnerability values (see Table 4). 

Table 4. Adjustment of the probabilities behind 
the Harnser Vulnerability Scores. 

P O I Sco
-re LIL UIL Mean 

Value 

ICM 
1 

Vuln. 
Value 

Harnser  
Vuln. 

Adjuste
d 

5 5 5 155 0 .008 .004 .0239 .0239 

5 5 4 154 .008 .016 .012 .0766 .0766 

5 5 3 153 .016 .024 .02 .1951 .1951 
… … … … … … … … … 

 
As a result of the adjustments outlined in 

Table 4, Figure 1b is modified accordingly, 
resulting in the updated representation shown in 
Figure 5. 
 

 
Fig. 5. Plot of the ICM 1 and adjusted Harnser 
Vulnerability values. The Harnser vulnerability values 
(blue dots) are unique match one-to-one to the ICM 1 
vulnerability values (yellow dots). 
 

As shown in Figure 2, the scoring scale was 
successfully adjusted to match the quantitatively 
calculated vulnerability values for the respective 
permutations. Within the given time step 
assumptions, the proposed scoring method 
demonstrates an accuracy comparable to that of 
the quantitative approach. 

Furthermore, Figure 6, which presents the 
results sorted by ICM 1 vulnerability values, 
clearly confirms that each quantitatively derived 
value can be effectively mapped using the adapted 
scoring system. This underscores the robustness 
of the proposed approach in bridging the gap 
between scoring-based and quantitative 
assessments. 
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Fig. 6. Plot of the ICM 1 and adjusted Harnser 
Vulnerability values sorted by the size of the ICM 1 
values. Blue dots: Adjusted Harnser vulnerability 
values. Yellow dots: ICM 1 vulnerability values. 

5. Conclusion 

This paper has demonstrated a systematic approach 
to extending the Harnser scoring metric to produce 
quantifiable, directly comparable results to a 
quantitative vulnerability assessment. By 
extending and modifying the traditional Harnser 
method, we have successfully ensured that each of 
the (5 × 5 × 5 =) 125 possible score combinations 
corresponds to a unique, quantitatively verifiable 
vulnerability score. 

 
5.1. Key findings and practical implications 
The core principle behind this adaptation is that 
scoring-based security assessments can be aligned 
with quantitative calculations if 

 
(1) The scoring scale is expanded to 

accommodate the number of possible 
permutations of scores and time levels. 

(2) Time-dependent levels are assigned 
within the scoring metric, ensuring a 
case-specific mapping between scoring 
results and real-world vulnerability 
estimates based on a quantitative metric. 

 
To achieve this, the traditional Harnser 

vulnerability scale (ranging from 3 to 15) was 
extended to 125 unique categories, exactly 
matching the number of possible score 
permutations (5 × 5 × 5). This was accomplished 
by introducing three weighting factors, each 
applied to the protection (P), observation (O), and 
intervention (I) scores. The weighting factors were 
scaled exponentially to ensure that each final score 
remained uniquely distinguishable and could be 
mapped to a quantitative vulnerability score 

derived from the ICM. Unlike the previous 
approach in Termin et al. (2023), which relied on 
interval-based probabilities, the adapted method 
allows for precise, discrete vulnerability values for 
each score (see Fig. (7)). 

 

 

 
Fig. 7. Comparison of the approach of Termin et al. 
(2023) with the approach of Termin et al. (2025) (this 
document). 



3321Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

5.2. Benefits and Practical Applications 
While this customization does not address 
fundamental limitations of scoring systems, such as 
the ordinal nature of scores, it does provide a viable 
solution for aligning semi-quantitative ratings with 
quantitative security assessments. This approach 
allows practitioners to use scoring while 
maintaining quantitative accuracy, making it 
highly relevant to practical security assessments. 
Key benefits include 

 
(1) Improved decision making: Security 

professionals can now compare and 
validate scoring results with quantitative 
models, increasing confidence in 
investment decisions. 

(2) Minimal added complexity: The 
introduction of weighting factors slightly 
increases computational complexity but 
remains intuitive and easy to use. 

(3) Use case adaptability: The method is 
flexible and can be tailored to different 
time step assumptions based on the 
specific characteristics of a given 
security scenario. For example, different 
barrier types or attack scenarios can have 
customized probability distributions, 
allowing for more context-sensitive risk 
assessments. 

(4) Potential for standardization: The 
adapted Harnser scale, including its 
probability mappings, could serve as a 
reference tool for vulnerability 
assessments in different security 
environments, ensuring a standardized 
risk assessment process in industrial 
applications. 

 
5.3. Future research and industrial 
implementation 
The feasibility of this approach has been 
demonstrated using a simple barrier-asset model, 
but further research is needed to validate its 
applicability to more complex infrastructure 
systems. Future studies should focus on: 

 
(1) Cost-benefit analysis: Applying this method to 

large-scale infrastructure projects to assess its 
impact on security investment decisions. 

(2) Real-world industrial implementation: 
Assessing how the adapted scoring model can 
be integrated into existing security assessment 

frameworks used in industry, government, and 
critical infrastructure protection. 

(3) Alternative configurations: Investigating how 
different time step assumptions affect scoring 
accuracy and whether dynamic time 
adjustments could further improve risk 
assessments. 
 
This research serves as a foundation for 

future work that bridges the gap between scoring 
metrics and rigorous quantitative analysis. By 
improving the practical applicability of scoring-
based assessments, this approach provides a 
scalable and adaptable tool for security 
professionals, policy makers, and risk analysts 
alike. 
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