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In an earlier paper we discussed the analytical solution of the Fokker-Planck (FP) equation for evaluating the 
overflow probability for the near surface repository of Abadia de Goiás, Brazil. Some preliminary considerations 
were approached in this reference. However, a formal approach for validating the results needed to be formulated. 
In this sense, we face the problem in this paper by approaching the solution for the overflow probability by numerical 
methods. An implicit numerical method was used, namely, the Crank-Nicolson method, which is known to be 
numerically stable. A discussion is performed on the initial and boundary conditions to solve the FP equation in 
order to obtain the probability density needed for calculating the overflow probability (in this sense, contrary to the 
analytical solution, the numerical solution does not need to be truncated because it starts at t = 0 with the defined 
initial condition). This latter depends on the repository institutional control period and, as in earlier published work 
on this subject, the institutional control period is varied from 5 years to 60 years. This wide range variation interval 
is justified by the fact that the repository design considers initially an institutional control period equal to 50 years. 
The numerical results for the probability density agree in terms of magnitude orders with the analytical ones 
published earlier. The overflow probabilities obtained are in good agreement with the ones obtained by the analytical 
methods.  
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1. Introduction 
After the Goiânia accident (IAEA, 1988), a near 
surface radioactive repository was designed and 
constructed in order to deposit the radioactive 
wastes contaminated with 137Cs (Tranjan Filho et 
al, 1997). A whole set of parameters was 
identified and considered in the design. 

In an earlier paper (Gabcan et al, 2023) we 
discussed the analytical solution of the Fokker-
Planck (FP) equation for evaluating the overflow 
probability for the near surface repository of 
Abadia de Goiás, Brazil. Some preliminary 
considerations were approached in this reference. 
However, a formal approach for validating the 
results needed to be formulated. In this sense, we 
face the problem in this paper, by approaching the 
solution for the overflow probability by numerical 
methods. 

We begin the discussion in section 2 by 
considering a literature review on the numerical 
solution of the FP equation. Section 3 is dedicated 
to the discussion both of the analytical and 
numerical solutions of the FP equation, where an 
overview of the analytical solution developed in 
Gabcan et al (2023) is presented, together with the 
numerical one, based on the Crank-Nicolson 
method (Neena et al, 2022). The methodology 
used for obtaining the numerical results is 
presented and discussed in section 4. Section 5 
compares results obtained with the Crank-
Nicolson time discretization to the analytical 
results of Gabcan et al (2023). It is important to 
stress that the comparison of the solutions is 
performed taking into account the overflow 
probability of the repository, not the probability 
densities obtained for calculating them. Finally, 
conclusions reached are presented in section 6. 
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2. Literature Review 
We present in this section a brief literature review 
on the subject. 

Fukushima et al (2002) discuss numerical 
solutions to the FP equation by using the finite 
difference method for a thermally assisted 
reversal of the magnetization in a single-domain 
particle for which a truncated Fourier series 
expansion can be an approximate solution. Also, 
an integral function is used to accurately solve the 
equation. 

Sun & Kumar (2014) present a solution to 
high-dimensional stationary FP equations by 
using tensor decompositions and Chebyshev 
spectral differentiation and applications to 
separable and non-separable systems, linear and 
nonlinear systems, and systems with and without 
closed-form stationary solutions up to 10-
dimensional state spaces. 

A finite difference scheme for solving the 
nonlinear FP equation is proposed in Sepehrian & 
Radpoor (2015). The intent is to discretize spatial 
derivatives. Next, a cubic C1-spline collocation 
method is used for the time integration of the 
resulting nonlinear system of ordinary differential 
equations. The proposed method has second-
order accuracy in space and fourth-order accuracy 
in time variables. The numerical results confirm 
its validity. 

Huang et al (2020) discuss a new 
convergence analysis for a finite element in space 
numerical method published earlier for solving 
fractional FP equations in a given domain with 
general forcing (i.e., the forcing term is both time 
dependent and space dependent). 

Butt (2022) presents a discussion on the 
characterization and numerical scheme to a 
control problem governed by a three-dimensional 
time-dependent FP equation. The approach 
controls the drift of the stochastic FP process so 
that the probability density function attains a 
specific configuration. Also, an FP control 
strategy for collective motion is investigated and 
first-order optimality conditions are presented. 
On staggered grids, the Chang–Cooper 
discretization scheme that ensures the positivity, 
second-order accuracy, and conservativeness to 
the FP equation is employed to the discretized 
state system. Numerical experiments presented 
show the efficiency of the proposed numerical 
scheme to FP control problems. 

Neena et al (2022) present three techniques 
for the numerical solution of the FP equation for 

some cases (FP with constant or linear drift 
coefficient, the backward Kolmogorov equation 
and the non-linear FP equation): the semi-implicit 
Euler, implicit Euler, and Crank-Nicolson. Three 
examples are presented for which analytical and 
numerical solutions are compared and the 
numerical methods proved to be competitive 
against existing methods. 

The review presented shows diverse 
applications of methods that show the relevance 
of using finite difference methods. 

3. Analytical and Numerical Solutions 
The FP equation numerically solved here has an 
advective term and a diffusive term and is known 
as the forward Kolmogorov equation, Gabcan et 
al (2023). 

We briefly discuss the analytical solution of 
the FP equation here because the details can be 
found in Gabcan et al (2023). Section 3.1 presents 
the basics for the analytical solution of the FP 
equation and section 3.2 is dedicated to the details 
of the numerical approach based on the Crank-
Nicolson method. 
3.1. Analytical solution of the FP equation 
The starting point is Gabcan et al (2023), where 
the FP equation was analytically solved to allow 
for obtaining the probability density p(x,t) for the 
liquid height (x) in the repository and for a given 
institutional control period (t), which is 
reproduced here for convenience. 
 

 
(1) 

where, 
 

 

 

 

 

 
Table 1 gives details on all parameters of Eq. (1), 
Gabcan et al (2023). 
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Table 1. Description of the parameters of Eq. (1) 

Symbol Description 
Fd Degradation function of the 

repository ceiling (dimensionless) 
n1 Internal porosity of the repository 

(dimensionless) 
b1 Repository base width (m) 
b2 Repository base length (m) 
E Repository base thickness (m) 
L Repository wall thickness (m) 
x Height of the liquid column inside 

the repository (m) 
xo Initial value of x (m) 

 Average rainfall rate (m/yr) 
 Evapotranspiration rate (m/yr) 

Irrigation rate (m/yr) 
Surface runoff (m/yr) 
Hydraulic conductivity of concrete 
(m/yr) 

In Eq. (1), p(x,t)dx is the probability that the 
liquid height inside the repository is between x 
and x + dx for a given institutional control period 
t (Feller, 1968). 

The FP equation is a partial differential 
equation in statistical mechanics used to describe 
the time evolution of the probability density 
function of the velocity of a particle under the 
influence of drag forces and random forces, as is 
the case in Brownian motion (Reif, 2009). As 
discussed in Gabcan et al (2023), it is applicable 
to the behavior of the liquid height inside the 
repository under discussion here. 

It is seen from Eq. (1) that p(x,t) in a non-
linear function that depends on several constants 
and on some rates. 

It is necessary to check the normalization 
property of p(x,t) from Eq. (1), Gabcan et al 
(2023) because although p(x,t) is a solution to the 
FP equation the domain of variable x is not 
necessarily restricted to non-negative values. The 
random variable X represents the liquid height 
inside the repository. We can have a mathematical 
solution to the equation that not necessarily is a 
physical solution, so to get a physical solution, it 
is necessary to check the normalization condition 
of p(x,t) (Feller, 1968). The probability density 
must be restricted to positive values of the liquid 
height and a physical upper limit must also be 
defined because no infinite heights are physically 
possible. From Alves et al (2015), an upper limit 

equal to 15 m has been adopted.  
The value equal to 4.38 m is the average 

internal height of the concrete structure of the 
Abadia de Goiás Repository (Tranjan Filho et all, 
1997), which is considered in the analysis. This 
value was obtained in the design of this 
repository, setting the values of the length and 
width of the base of the facility and using the 
volume of waste to be deposited. In the modeling 
presented in this article, it is considered that the 
repository overflow will occur for a liquid column 
height equal to or greater than that mentioned 
above. 

The boundary conditions for the initially 
obtained p(x, t) for which x can be negative is such 
that p(– ∞, t) = p(+ ∞, t) = 0 [in this sense, it is 
advisable to check Fig. 3 of Gabcan et al (2023)]. 
On the other hand, p(x, 0) is defined by means of 
a Dirac delta [see Eq. (12) of Gabcan et al (2023)].  

In this sense, the normalization property 
means that: 

 (2) 

The overflow probability is obtained from: 
 

 (3) 

P(X > 4.38;t) means the probability that the 
liquid height is at least equal to 4.38 m (the 
repository height) for a given institutional control 
period, t.  
 
3.2. Numerical solution of the FP equation 

The FP equation describing the repository 
problem is a 2nd order parabolic partial differential 
equation in the given (x,t) domain. It comprises 
both an advective term and a diffusive term. To 
select an appropriate numerical method, it is 
essential to initially determine which term 
prevails over the other. Therefore, evaluating the 
Péclet number (Pe) through the domain is crucial 
for choosing a suitable numerical approximation. 
Pe quantifies the ratio between convective and 
diffusive effects: if Pe  1, diffusion dominates, 
whereas if Pe > 1, convection is the primary 
influencing factor in the solution. The Péclet 
number was computed for various values of hₓ, 
confirming that diffusion dominates across the 
entire x-domain. This justifies our choice of the 
numerical method described in this section 
(Anderson et al, 2021).  
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Also, in order to establish appropriate values 
for hx and ht, the Courant-Friedrichs-Levy (CFL) 
criterion was satisfied for the numerical mesh 
used. This criterion guarantees that in the time 
interval ht the distance traveled by the wave or the 
information is not greater than the mesh space hx. 
Although for the Crank-Nicolson time 
discretization adopted here, the CFL condition is 
not important to assure stability, it may influence 
the precision for larger time intervals (Anderson 
et al, 2021). 

In order to discuss the numeric solution of 
the FP equation, we reproduce it here: 

 
(4) 

where p = p(x,t) and A(x) is defined as for Eq. (1). 
A time discretization was performed, where 

the first-order partial derivative in time was 
approximated by forward differences, and the 
RHS of Eq. (4) was handled using the well-known 
Crank-Nicolson method (Richtmeyer & Morton, 
1967). This space-time discretization is the same 
as used in Neena et al (2022), where both the 
spatial and time discretizations are referred to as 
the Crank-Nicolson scheme.  

To facilitate the derivation of the numerical 
method applied to Eq. (4), the coefficients were 
redefined as: 

Considering the spatial grid given by hx and the 
time grid given by ht, one arrives at: 
 

 
(5) 

where: 

Eq. (4) results in a tridiagonal matrix system, 
which is then solved using the well-known 
tridiagonal matrix algorithm (TDMA). 

After obtaining the numerical probability 
density with the help of Eq. (4), it is necessary to 
check its normalization property. The starting 
point for the liquid height is xo = 10-4 m (Table 2), 
for which the probability density is set equal to 
zero.  

4. Methodology 
The results are to be obtained for t = 5, 10, 20, 30, 
40, 50, and 60 years. These values represent 
possible institutional control periods including the 
one considered in the repository design (Tranjan 
et al, 1997), that is, 50 yr. 

The result that is of interest is the overflow 
probability, so that after obtaining the probability 
density from Eq. (1), one obtains this probability 
from Eq. (3) and this probability will be the 
parameter for comparison purposes. 

For obtaining the analytical results, the 
starting point is also Eq. (1). It is necessary to take 
into account the design values for the parameters 
displayed in Table 1. 

Table 2 displays the necessary data for the 
analysis (Gabcan et al, 2023). 

Table 2. Design values for the parameters of Eq. 
(1) [Gabcan et al, 2023)] 

Parameter Design value 
Fd 0.10 (dimensionless) 
n1 0.09 (dimensionless) 
b1 60 m 
b2 20.1 m 
E 0.20 m 
L 0.20 m 
xo 10-4 m 

 1.592 m/yr 
 1.457 m/yr 

1.592 × 10-2 m/yr 
1.5092 × 10-3 m/yr 

Kc 3.15 × 10-4 m/yr 
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Notice that with the help of Table 2 and Eq. 
(3) it is possible to obtain all the needed analytical 
results. 

On the other hand, for obtaining the 
numerical results, the starting point is Eq. (4). It 
is necessary to define a spatial grid. By 
performing some preliminary tests, the spatial 
grid was defined as follows: hx = 0.25 m and ht = 
10−4 yr. 

5. Results and Discussion 
The results in Figures 1 – 7 were obtained for 
repository liquid heights varying from 10-4 m to 
15 m. This height range is discussed in Frutuoso e 
Melo (2023). The truncated analytic solution for 
this case can be seen in detail in Gabcan et al 
(2023). 

As mentioned earlier, the analysis begins 
with the consideration of the probability density 
for an institutional time period equal to 5 yr.  In 
an earlier paper (Gabcan et al, 2023) we obtained 
the analytical probability density for this time 
period, named p(x,5). It was evaluated by 
considering the discussion in section 3.1. Now, by 
applying the methodology discussed in section 4, 
it is possible to obtain this probability density by 
the Crank-Nicolson method. 

Fig. 1 displays the results for the 
institutional control period of 5 yr. 
 

 
Fig. 1. Probability densities for an institutional control 
period of 5 years 
 

If one considers the Crank – Nicolson 
solution (in green), it is seen that the curve peak 
is slightly drifted to the right and higher than the 
truncated analytic solution. The curves go to zero 
mainly for liquid heights higher than 6 m. The 
analytical curve starts at about 0.26, while the 
numerical one starts at about 0.05 (for x = 10-4 m). 

There is quite a reasonable agreement 
between the truncated analytical solution and the 
Crank – Nicolson numerical solution, although 
the truncated analytic curve presents a peak at a 
liquid height around 0.7 m, while the numeric one 
presents a peak about 2 m.  

It is clearly seen from Fig. 1 that the 
overflow probability evaluated from the 
analytical solution is higher than the one 
calculated from the numerically obtained 
probability density. The overflow probability 
obtained from the analytical probability density is 
equal to 8.16 × 10-2, while the one obtained from 
the numerical solution for the FP equation is equal 
to 4.32 × 10-2. It should be noted here that the 
calculation of this overflow probability involves 
calculating the area of the probability density 
p(x,5) between 4.38 m and the liquid height limit, 
assumed to be 15 m. Also, if one calculates this 
overflow probability by considering a liquid 
height equal to infinity the difference is not 
significant because the probability density curves 
fall off to zero quite quickly. 

The next step is to consider the numerical 
solution for t = 10 yr. Fig. 2 displays the results 
for this case. 

 

Fig. 2. Probability densities for an institutional control 
period of 10 years 
 

As expected, the analytical solution drifts to 
the right with a peak lower than the one in Fig. 1. 
A better agreement is seen between the truncated 
analytical solution and the numerical solution, as 
compared to the results for the 5-year control 
period. Both curves flatten a little due to the 
diffusion-convection process. Both solutions 
approach the steady-state behavior. 

Here, p(0, 10) = 0.175 (analytical solution) 
and p(0, 10) = 0.025 (numerical one). Both are 
smaller than for t = 5 yr.  



2622 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

The overflow probabilities in this case are 
given by 2.14 × 10-1 for the truncated analytical 
solution (red), and 2.56 × 10-1 for the numerical 
solution (green). The numerical result is 
conservative although it retains the same order of 
magnitude of the analytical solution. 

Fig. 3 displays the results for the 
institutional control period of 20 years. 
  

 
Fig. 3. Probability densities for an institutional control 
period of 20 years 

 
The solution drift to the right goes on as the 

curves flatten and it is clear that the truncated 
analytical solution falls down faster than the 
numerical one. The numerical solution falls down 
much more slowly than the truncated analytical 
one. Notice also that the peaks of the numerical 
and steady-state solutions are quite closer (3 m). 
Even for a liquid height equal to 15 m, the 
numerical solution falls down slowly. 

Also, p(0, 20) = 0.1125 (analytical) and p(0, 
20) = 0.015 (numerical), so that this value is lower 
for the first case but remains constant for the 
second one as compared to those for t = 10 yr.  

For this case, the overflow probability 
behaves as follows. It is equal to 3.73 × 10-1 
(truncated) and 5.83 × 10-1 (numerical). Notice 
that the overflow probability in this latter case 
raises by a factor of over 50% in comparison to 
the result for the 10-year control period. This 
shows that the numerical solution is quite 
sensitive to institutional control periods between 
10 yr and 20 yr. 

Fig. 4 displays the results for the 
institutional control period equal to 30 yr. 

The curves cross at about 7.2 m and their 
peaks are at about 4 m (analytical) and 3.5 m 
(numerical). Also in this case, the numerical 
probability density falls down to zero quite slowly 
(while the analytical approaches zero at about 13 

m of liquid height). p(0, 30) = 0.035 (analytical) 
and p(0, 30) = 0.0085 (numerical), thus keeping 
the descending pattern. 

 

Fig. 4. Probability densities for an institutional control 
period of 30 years 
 

Regarding the overflow probability, it is 
4.67 × 10-1 (analytical) and 6.67 × 10-1 
(numerical). Still in this case, the result for the 
numerical calculation is higher than the one for 
the analytical case. However, they still preserve 
the same order of magnitude. 

Also, in this case the analytical solution 
starts at a value higher than the one for the 
numerical case. 

Fig. 5 presents the results for t = 40 yr. 
 

Fig. 5. Probability densities for an institutional control 
period of 40 years 
 

The curve peaks are at about 4.5 m 
(analytical) and 3 m (numerical) and p(0, 40) = 
0.06 (analytical) and p(0, 40) = 0.01 (numerical). 
The same curve pattern is preserved. 

Concerning the overflow probability, it is 
5.34 × 10-1 (analytical) and 6.85 × 10-1 
(numerical) and the latter is still higher than the 
first one. 

The next case to be presented and discussed 
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relates to the institutional control period of 50 
years, which is the one chosen by the regulatory 
body, as mentioned earlier. Fig. 6 displays the 
results obtained. 
 

 
Fig. 6. Probability densities for an institutional control 
period of 50 years 
 

It can be seen that the truncated analytical 
solution drifts to the right once again, as expected. 
Its peak is at about x = 5 m (analytical) and x = 3 
m (numerical). On the other hand, the peak of the 
numerical solution is quite to the left and this 
numerical solution is practically the same as that 
for the 20-year institutional control period. Once 
again, the analytical solution falls off to zero 
much faster than the numerical one. 

The overflow probabilities for this 
institutional control period are as follows. For the 
truncated analytical solution, it is equal to 5.88 × 
10-1. For the numerical solution, it is equal to 6.89 
× 10-1. Once again, the probability for the 
numerical solution is conservative and still about 
50% higher than the one for the truncated 
analytical solution. 

Fig. 7 presents the results for the last case 
envisaged, that for t = 60 yr. 

It can be seen that p(0, 60) = 0.045 
(analytical) and  p(0, 60) = 0.01 (numerical). 
Notice that for the analytical case it keeps the 
descending pattern while for the numerical solution 
it is in the steady-state behavior. The peaks are at x 
= 5.5 m (analytical) and x = 8.5 m (numerical). 

It can be seen that p(0, 60) = 0.045 
(analytical) and  p(0, 60) = 0.01 (numerical). 
Notice that for the analytical case it keeps the 
descending pattern while for the numerical solution 
it is in the steady-state behavior. The peaks are at x 
= 5.5 m (analytical) and x = 8.5 m (numerical). 
 

Fig. 7. Probability densities for an institutional control 
period of 60 years 
 

Concerning the overflow probability, it is 
equal to 6.34 × 10-1 (analytical) and 6.90 × 10-1 
(numerical). The numerical results reached the 
steady-state value at this point. 

Table 3. Overflow probability: comparison and 
relative errors 

t (yr) Analytical CN(*) e (%)(**) 
5 8.16 × 10-2 4.32 × 10-2 47.1 
10 2.14 × 10-1 2.56 × 10-1 19.6 
20 3.73 × 10-1 5.83 × 10-1 56.3 
30 4.67 × 10-1 6.67 × 10-1 42.8 
40 5.34 × 10-1 6.85 × 10-1 28.3 
50 5.88 × 10-1 6.90 × 10-1 17.2 
60 6.34 × 10-1 6.90 × 10-1 8.8 
70 6.73 × 10-1 6.90 × 10-1 2.5 
80 7.08 × 10-1 6.90 × 10-1 2.5 
(*) CN = Crank-Nicolson 
(**) e = relative error 

 

 
Table 3 displays the results obtained for the 

overflow probability up to 80 yr. The inclusion of 
times greater than 60 yr is to show how the 
analytical solutions behave as compared with the 
numerical one (in what regards the steady-state 
behavior). It is seen that the highest relative error is 
obtained for t = 20 yr. For the design institutional 
control period of 50 yr, this error is equal to 17.2%. 

Table 3 shows that the best results are those 
for t = 70 yr and 80 yr because the analytical 
solution reaches the steady-state behavior slower 
than the numerical one.  

To obtain the numerical results each run of 
the program written in Fortran takes a few 
seconds to generate the results on a Dell EVO 
laptop with an i7 processor. 



2624 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

6. Conclusions 
The purpose of this paper was to show that the 
analytical solution to the FP equation is validated 
by means of a numerical approach based on the 
Crank-Nicolson technique. The leading reference 
for this choice was Neena et al (2022). 

The comparison of results for the design 
institutional control period of 50 yr showed that 
the relative error is about 17% for the overflow 
probability. Slightly higher values bring a better 
agreement between both solutions. 

There is an oscillation in the relative error 
for small institutional control periods (5 yr – 20 
yr) followed by a monotone decrease of this error 
up to an institutional control period of 80 yr. The 
best result is achieved for an institutional control 
period of 70 yr. 

The results agree quite well if one considers 
their order of magnitude (mostly 10-1). For the CN 
method an asymptotic value of 6.90 × 10-1 is 
reached while for the analytical solution it is 
slightly higher (~ 7 × 10-1). 
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