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Constructing binary decision diagrams using machine learning
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Binary decision diagrams are a highly popular method for calculating system reliability. By representing the structure
function of a binary monotonic system as a binary decision diagram, the calculation of the system’s reliability can,
in principle, be performed efficiently. However, constructing such diagrams can still be challenging. To ensure that
calculations are done quickly, it is important that the diagrams are as compact as possible. In this article, we will
show how binary decision diagrams can be constructed using machine learning. The method assumes the existence of
a dataset with corresponding values of component states and system states. Such a dataset can easily be generated of
any size if the structure function is known and can be calculated efficiently. However, the method can also be used to
approximate an unknown structure function based on similar experimental data. The number of possible component
states naturally grows exponentially with the number of components in the system. Consequently, if the number of
components in the system is high, it will, in practice, not be possible to obtain sufficient data to perfectly describe
the system’s structure. In the article, we will compare different strategies for handling this problem. Specifically, it is
of interest to compare methods that aim to approximate the structure function as accurately as possible with methods
that instead focus on estimating system reliability as accurately as possible. The methods will be illustrated with a
few examples.
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1. Introduction formed efficiently. However, constructing such di-
agrams can still be challenging. To construct a
binary decision diagram of a binary monotone
system, one would typically start with some form
of precise representation of the system’s structure
function. This could, for example, take the form
of a network where the system operates if a set
of terminals can communicate via the edges in
the network. In other cases, the system’s struc-
ture function is represented by a compact math-
ematical formula. However, there may also be
situations where such a precise representation is
not available. Instead, one might have a dataset
consisting of corresponding observations of com-
ponent states and system states. Based on these
observations, the goal is to estimate a structure
function.

In this article, we will show how binary deci-
sion diagrams can be constructed using a simple
machine learning method. The method assumes
the existence of a dataset with corresponding val-
ues of component states and system states. Such a
dataset can easily be generated of any size if the
structure function is known and can be calculated

When we use the term system, we think of some
technological unit consisting of a finite set C' =
{1,...,n} of components which are operating
together. A binary system has only two possible
states: functioning or failed. Moreover, each com-
ponent is either functioning or failed as well. The
state of the system is represented as a function
¢ of the component state variables. The function
¢ is referred to as the structure function of the
system, and the ordered pair (C, @) is referred
to as a binary monotone system. A main goal is
to compute the reliability of the system, i.e., the
probability that the system is functioning given the
joint distribution of the component state variables.
In general, this is an NP-hard problem. Still in
many cases it is possible to find algorithms which
can compute the reliability fairly efficiently for
large classes of systems.

In this paper we will focus on methods based
on binary decision diagrams. By representing the
structure function of a binary monotonic system
as a binary decision diagram, the calculation of
the system’s reliability can, in principle, be per-
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efficiently. However, the method can also be used
to approximate an unknown structure function
based on similar experimental data.

2. Binary decision diagrams

Binary decision diagrams or BDDs have many dif-
ferent applications in computer science, and dates
back to the papers Lee (1959) and Akers (1978).
More efficient implementations were introduced
in Bryant (1986), Brace et al. (1990) and Burch
et al. (1992). Applications of BDDs in reliability
theory were introduced in Coudert and Madre
(1993) and Rauzy (1993) and adapted to network
reliability in Bobbio and Terruggia (2007). For
a survey of these and other related methods see
Rauzy (2008).

A binary decision diagram can be interpreted
as a representation of a binary function ¢
{0,1}™ — {0, 1} in the form of a rooted directed
acyclic graph. In our context the function ¢ is typ-
ically the structure function of some binary mono-
tone system. This means that we only consider
the special case where the binary function is non-
decreasing in each argument. The root and the
intermediate nodes are drawn as circular nodes,
and labelled with indices of the binary input vari-
ables. The edges represent decisions regarding the
values of the input variables, i.e., whether the
value of an input variable is fixed to be either
0 or 1. The square leaf nodes represents cases
where the associated binary function is trivial, and
the labels in this case represent the corresponding
binary value, i.e., either O or 1.

Figure 1 shows a binary decision diagram of
a 2-out-of-3 system. There are three binary input
variables, x1, z2, x3. The binary function ¢, rep-
resents the structure function of the system, and is
given by:

d(x) = z120 + 123 + To23 — 2012273

To each node in the diagram we associate a binary
function defined as a function of the remaining
binary variables whose values are not yet fixed. In
particular, the root node in the diagram, labelled 1,
is associated with the function ¢ itself since at this
stage none of the variables are fixed. The lower
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Fig. 1. Anordered binary decision diagram of a 2-out-

of-3 system.
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level nodes are associated with structure functions
of minors of the system under consideration. Since
each input variable has two possible values, 0 and
1, each node has exactly two children, i.e., nodes
connected by edges to the parent node, where as a
convention the lefthand child represents the binary
function given that the respective input variable is
fixed to be 0, while the righthand child represents
the binary function given that the respective input
variable is 1. In Figure 1 there are two nodes
labelled 2 which are children of the root node 1.
To the leftmost node we associate the function:

(01, ) = wous,

while the rightmost node we associate the func-
tion:

d(11, @) = xo + w3 — T2x3

At the next level of the diagram there are two
intermediate nodes and two leaf nodes. From left
to right these nodes correspond to the following
binary functions:

#(01,02, ) =0,
(01,12, ) = x3,
¢(117027 x) = 3,
d(11,12,2) = 1.

We observe the binary functions associated with
the two leaf nodes are trivial with values 0 and
1 respectively. The binary functions associated
with the two intermediate nodes depends on the
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remaining input variable 3. Thus, for these nodes
we proceed to the final level consisting of four leaf
nodes. From left to right these nodes correspond to
the following binary functions:

Note that since the binary functions associated
with the two intermediate nodes labelled 3 are
identical, it follows that the subgraphs rooted at
these nodes are isomorphic®.

We now consider the states of the input vari-
ables as independent stochastic variables, denoted
)(1,)(27 X3, and let P(Xz = 1) = Di, = 1, 2, 3.
Then each node in the diagram corresponds to
an event defined by the state of the stochastic
variables that are fixed. The event corresponding
to the root node, has probability 1 since none of
the variables are fixed at this stage. By propagat-
ing the event probabilities downwards through the
diagram all the way to the leaf nodes, we can
easily compute the probabilities of each event.
Finally, given the probabilities of the leaf nodes,
we find the probability distribution of ¢(X) by
adding the probabilities associated with the leaf
nodes labelled 0 and 1 respectively. In the diagram
shown in Figure 1 there is a one-to-one correspon-
dence between the input variables and the levels
of the diagram. That is, input variable 1 is handled
at level 1, input variable 2 is handled at level 2,
etc. Such diagrams are referred to as ordered bi-
nary decision diagrams. When the diagram has a
rooted tree structure, like the one shown in Figure
1, however, we do not need to handle the input
variables in an ordered way. In Figure 2 the input
variables 2 and 3 are handled in a different order
in the lefthand and righthand parts of the diagram.
Thus, we observe that the two nodes at level 2 do
not refer to the same input variable.

aTwo directed graphs G' and H with node sets V(G) and
V(H) respectively are said to be isomorphic if there exists a
bijective mapping, ¢ : V(G) — V(H), such that G contains
a directed edge from node u to node v if and only H contains
a directed edge from node ¢ (u) to ¥ (v).
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Fig. 2. An unordered binary decision diagram of a 2-
out-of-3 system.

The event probabilities of the nodes in the di-
agram is computed event by event, and level by
level in the diagram. Since each event probability
is calculated in constant time, the computational
complexity of computing all event probabilities,
and thus also the distribution of ¢(X), is propor-
tional to the number of nodes in the diagram.

Note that when a binary decision diagram has
been constructed, this diagram represents the bi-
nary function of interest, regardless of the distri-
butions of the input variables. Thus, we can use
the same diagram to compute the distribution of
(X)) for any number of distributions of the input
variables. This allows us to e.g., use the diagram
for various types of sensitivity analysis.

A generic Python script for constructing BDDs
is given in Huseby and Dahl (2024). This Python
script can be used on many different types of
systems. However, in order to apply this script to
a given system, some of the generic methods must
be tailored to fit the system under consideration.
In particular, the following methods must be im-
plemented in a system specific way:

e A method for representing the binary
functions obtained as a result of fixing
the values of the input variables (restric-
tion and contraction)

e A method for determining if a binary
function is trivial.

e A method for selecting input variables
for each node in the BDD
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The different implementations of these methods
depend strongly on the class of systems under
consideration, and on the chosen representation of
the binary functions. Specialized Python scripts
for various classes of systems can also be found
in Huseby and Dahl (2024).

In Bryant (1986) a reduced form of a binary
decision diagram was introduced. See also Brace
et al. (1990). We refer to such diagrams as reduced
ordered binary decision diagrams or ROBDDs.
An ROBDD is obtained from an ordered binary
decision diagram by merging nodes which cor-
respond to equal binary functions. In particular,
such diagrams only have two leaf nodes, one la-
belled 0 and one labelled 1. For these reductions
to work, however, only ordered decision diagram
are allowed. The reason for this is that if we use
unordered diagrams, nodes at the same level will
correspond to binary functions with different input
variables. Thus, it is typically not possible to find
nodes which correspond to equal binary functions.
Figure 3 shows a reduced ordered binary decision

Q\ Level 1
0 1
CZ{ }2} Level 2
1 \ / 0
0 R Level 3
0 1 \
]

Fig. 3. A reduced ordered binary decision diagram of
a 2-out-of-3 system.

diagram for a 2-out-of-3 system. This is obtained
from the diagram shown in Figure 1 by merging
the leaf nodes labelled O into one leaf node and
by merging the leaf nodes labelled 1 into one leaf
node. Finally, the two intermediate nodes labelled
3 are merged into one intermediate node.

The reduction technique introduced in Bryant
(1986) can in many cases reduce the computa-
tional complexity of reliability calculations con-
siderably. As noted by Bryant (1986), however,
the ordering of the input variables, or components
in our context, may have a large impact on the size
of the diagram. Unfortunately, finding an ordering
that minimizes the size of the graph is itself known
to be a co-NP-Complete problem (see Bryant
(1986)). Thus, most algorithms for constructing
reduced ordered binary decision diagrams rely
on some sort of heuristic method for ordering
the input variables. Here, we will not go further
into the problem of finding efficient orderings,
but instead assume that an ordering of the input
variables has been chosen. Given an ordering of
the input variables, the problem of constructing a
reduced ordered binary decision diagram is still
not trivial. There are two main challenges with
this method. Firstly, the size of the ordered binary
decision diagram may be very large, as the num-
ber of nodes typically grows exponentially in the
number of input variables. The second challenge
is that identifying isomorphic subgraphs can be
computationally difficult as well. In order to man-
age these problems the reductions should be done
along the way as a part of the initial construction.

A generic Python script for constructing ROB-
DDs is also given in Huseby and Dahl (2024). As
for the BDD script, the following methods must
be implemented in a system specific way:

e A method for representing the binary
functions obtained as a result of fixing
the values of the input variables (restric-
tion and contraction).

e A method for determining if a binary
function is trivial.

e A method for determining if two binary
functions are identical.

Again the actual implementation of these methods
depend strongly on the class of systems under
consideration, and on the chosen representation of
the binary functions.
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3. Constructing BDDs based on training
data

Let (C,¢) be a binary monotone system where
C ={l,...,n},and let x = (x1,...,2,) de-
note the component state vector. We assume that
for each vector , the corresponding system state
¢(x) can be calculated efficiently.

Training data can then be generated by sam-
pling x;,...,xy from a suitable joint distribu-
tion, and for each sampled vector, x;, we calcu-
late the corresponding system state ¢(x;), j =
1,..., N. The resulting data can then be repre-
sented by a matrix M given by:

d(x1) w11 T21 0 T

¢($2) T11 T21 0 Tpl
M =

¢($N) TIN T2N * ' TnN

Assume that we want to find the training data
matrices corresponding to the restriction and con-
traction with respect to some component i € C'.
We denote these matrices by M_; and M_; re-
spectively. (A similar procedure will be applied at
lower levels in the BDD.)

In order to determine M_; and M ;, we intro-
duce the following index sets:

Uiz{jilﬂijzl}
M_; is then obtained from M by deleting the

column vector (1, . .., x;n)’, and then keep only
the rows:

[p(x)), 715, - -

where j € L;. Similarly, M ; is obtained from

s Li—1,55 Lid1,55 -+ ,xnjL

M by deleting the column vector (z;1, ..., z;n)’,
and then keep only the rows:
[¢(wj)7a71j: sy Li—1,5 Litl,gy - - JﬁnjL

where j € U;. In order to choose the pivotal
element, i.e., the component we want to use in
the minor operations, we use different methods for
BDDs and ROBDDs. For BDDs we choose the re-
maining component having the state variable with
the highest Birnbaum importance measure with
the structure function, where the Birnbaum im-
portance measure is calculated empirically based
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on the training data. For ROBDDs we assume
that we have sorted the components initially, and
then simply choose the component with the lowest
index.

In order to determine if a system is trivial, we
apply the following rule:

o If p(x;) = 0 for j = 1,...,N, the
system is classified as trivially failed.

o If p(x;) =1forj=1,..., N, the sys-
tem is classified as trivially functioning.

Due to the randomness of the training data, it is
not possible to determine with certainty whether
or not two systems are identical. An indication of
equivalence, however, can be obtained by compar-
ing the fraction of remaining rows where the struc-
ture function is equal to 1. Thus, two systems with
approximately equal estimated reliability, could
possibly be considered to be equivalent.

4. Numerical examples

In this section we illustrate the proposed method
by considering two very simple examples. In the
first example we consider a threshold system, i.e.,
a system which is functioning if and only if a
weighted sum of the component state variables is
greater than or equal to a given threshold value.
The system is denoted by (C,¢), where C' =

{1,...,6}, and where the structure function is
given by:
6
d(@) =10 aiw; > b), (1)
i=1
where the weight vector, a = (aq,...,aq), is

given by (8,7,6,5,3,2) and the threshold, b, is
20.

As mentioned, for the ROBDD method we need
to sort the components. For threshold systems it is
fairly obvious that the components should be or-
dered with respect to their weights, so component
1 is the one with the highest weight, component 2
is the one with the second highest weight etc. In
cases where two or more components have equal
weights, we simply break ties arbitrarily.

In order to represent the binary functions ob-
tained by fixing the value of say, the jth input
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variable, we apply Eq. (1) and get:

¢(0;,@) = 1> a;z; > b),
i#j

¢(1j,m) = I(Z a;T; > b— aj)
i)

From this it follows that the restriction and the
contraction of (C,¢) with respect to component
7 are both threshold systems. Thus, the class of
threshold systems is closed under minor opera-
tions.

If the sum of the remaining weights are less
than the threshold, we know that the minor is
trivial with structure function identical to 0. Con-
versely, if the threshold value is less than or equal
to zero, then the minor is trivial with structure
function identical to 1 . Thus, in order to check
whether a binary function is trivial, we only need
to compute the sum of the weights and compare
it to the threshold. Based on these observations it

N

N

1 0

Fig. 4. A reduced unordered binary decision diagram
of the threshold system (C, ¢).

is fairly easy to construct a BDD or an ROBDD
for this system. In Figure 4 we have shown the
ROBDD constructed directly from the mathemat-
ical definition of the system. We note that at level
3 in this diagram two nodes have been merged. To
see why this can be done, we note that:

6
¢(01, 19, ) = I(Z a;x; > b—as)
i—3

6
=10 air; > 13),
1=3

and:

6
¢(11702,$) = I(Z a;T; Z b— G,l)
=3

6
=3

The fact that the threshold values for ¢(01, 12, )
and ¢(11,09, ) are different, may suggest that
these two structure functions are not equal. How-
ever, by considering the set possible values of the
weighted sum Z?:g a;x;, it turns out that there
are no values between 11 and 13. Thus, we may
replace the threshold value of ¢(1;,02, ) by 13
without changing the system. Hence, we conclude
that:

(01,12, ) = $(11, 02, x)

By a similar argument we can justified that two
nodes have been merged at level 6 as well.

In order to demonstrate the training method
proposed in the previous section, we generated a
.,x N, where N = 10000, and cal-
culated the corresponding values of the structure

sample x1, ..

function ¢. In order to span the outcome space as
much as possible, the component state variables
were generated as independent, identically dis-
tributed variables such that P(X; = 1) = 1, i =
1,...,6. Based on these simulated observations
we constructed both a BDD representation and an
ROBDD representation of the system. Focussing
on the ROBDD case the resulting diagram was
almost identical to the one illustrated in Figure 4.
The only difference was that the training method
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did not identify the two nodes at level 6 as identi-
cal, and hence did not merge these nodes. Still the
resulting diagram matched the structure perfectly.

In the second example we consider a two-
terminal undirected network system illustrated in
Figure 5.

Fig. 5. A two-terminal undirected network system.

For the ROBDD method we again need to sort
the components. However, for threshold systems
finding the optimal ordering of the components is
not so easy. In the test we simply ordered the com-
ponents according to the indices indicated in Fig-
ure 5. This resulted in an ROBDD which was a bit
complex. As in the previous example we we gen-
erated a sample x1, ..., xy, where N = 10000,
and calculated the corresponding values of the
structure function ¢. Again, the component state
variables were generated as independent, identi-
cally distributed variables such that P(X; = 1) =
%, i =1,...,5. Based on these simulated obser-
vations we constructed both a BDD representation
and an ROBDD representation of the system. The
ROBDD representation essentially replicated the
ROBDD we got based on the mathematical rep-
resentation except that the training method failed
to identify some identical nodes. Still the resulting
diagram matched the structure perfectly. However,
the BDD representation, shown in Figure 6, was
actually slightly simpler than the ROBDD rep-
resentation. The main reason for this was that
the BDD training method managed to find better
choices for the pivotal elements. In fact the BDD
training method clearly benefitted from not being
restricted to ordered diagrams.
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Fig. 6. A BDD of a two-terminal undirected network
system.

5. Conclusions and final remarks

In this article, we have demonstrated how ma-
chine learning can be used to construct BDD and
ROBDD representations of binary monotone sys-
tems. The methodology has been illustrated using
two very simple systems: a threshold system and
a network system. For these systems, the pro-
posed methods were able to construct diagrams
that perfectly matched the binary systems. Larger
and more complex systems require an increase in
the amount of training data to achieve satisfactory
precision.

For effective ROBDD representations, it is cru-
cial that the method can identify identical struc-
tures during the process. In both examples, we
observed that this only partially succeeded. To
make the methods more accurate, it would be de-
sirable to have the ability to test whether two given
structures are identical. This can be achieved by
generating test data during the process that can be
used for such comparisons. However, a necessary
prerequisite for this is having access to the true
structure function in addition to the training data.

In the examples presented here, all training
data were generated from a uniform distribution
over the space of binary vectors. This was chosen
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to ensure the data would best span the outcome
space. For large, complex systems, the proposed
methods can only provide an approximation of
the true structure. In such situations, it becomes
important that the approximation performs as well
as possible for states with high probability. To en-
sure this, training data should be generated based
on a realistic probability distribution rather than a
uniform distribution.
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