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Natural gas transmission pipeline (NGTP) networks are infrastructures, whose operation is critical in view of growing 
global energy demand. Unexpected natural gas supply interruptions have occurred in the last decade, highlighting the 
critical role of reliability and resilience of NGTP networks. Graph theory, complex networks analysis, thermal-
hydraulic and transient/steady-state gas flow models have been applied to assess the capacity and flow of gas pipeline 
networks. NGTP networks are considered as multi-component systems subject to single failure modes of a rate often 
assumed constant. The flow analyses are performed for the whole network without considering the priority of gas-
receiving terminals and the associated different penalty schemes for gas not supplied. The present work proposes a 
framework for modelling and analysing of the capacity and flow of NGTP networks subject to multiple failure causes 
and considering repairs. Graph theory and Markov chain are used for modelling and a Monte Carlo Simulation is used 
for quantification. A numerical example is used to illustrate the overall modelling and computational framework. The 
results of the application of the modelling and computational framework here proposed work can inform operational 
management strategies for reducing the risk of service disruption and improving NGTP resilience. 

 
Keywords: Gas pipeline networks, supply resilience, network flow analysis, Markov chain, network flow optimisation, 
Monte Carlo simulation.  

1 Introduction 
Global natural gas consumption is projected to 
reach 4,200 billion m3 per year by 2050 (Sesini, 
Giarola and Hawkes, 2020). In the EU, gas supplies 
one-quarter of primary energy and plays a key role 
in coal-to-gas power generation, potentially 
replacing up to 50% of the EU’s coal-fired power 
to reduce greenhouse emissions (IEA, 2019). 

Considering the crucial role of gas in the EU's 
energy mix, ensuring a secure, reliable and cost-
effective gas supply is essential (Percebois, 2008). 
However, gas supply disruptions remain a major 
concern. Over the past two decades, Europe has 
reported more than 388 incidents in gas 
transmission pipelines (Austvik, 2016; EGIG, 
2020).  

Then, resilience has become a key driver in 
Natural gas transmission pipeline (NGTP)network 
design and operation (Jiang et al., 2023; Cimellaro, 
Villa and Bruneau, 2015; Dell’Isola et al., 2020; 
Okoro, Khan and Ahmed, 2022). Monte Carlo 
(MC) simulation of damage and recovery of 

pipelines (Su et al., 2018b; Su et al., 2018c; Fan et 
al., 2022; Sacco et al., 2019; Compare et al., 2020), 
coupled with hydraulic analysis of network gas 
flow (Jiang et al., 2023), graph theory- and flow-
based methods (Li et al., 2021; Praks, 
Kopustinskas and Masera, 2015; Qiao et al., 2017; 
Su et al., 2018a; Su et al., 2022) have been used for 
assessing the resilience of natural gas supply and 
suggesting operational management strategies to 
reduce the risk of service disruption.  

These assessments often consider a single 
failure mode for pipeline failures. However, in 
practice, pipelines can have different failure modes 
such as corrosion-related leakage and rupture, and 
may fail for multiple reasons (Pettitt and Morgan, 
2009). Since required maintenance tasks and 
network downtimes depend on the type of failure, 
neglecting the analysis of multiple failure modes 
may lead to unrealistic results. 

Methods for assessing gas pipeline network 
resilience often rely on network flow capacity 
models to estimate flow under various disruption 
scenarios. While thermal-hydraulic models (Su et 
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al., 2018a) and steady-state/transient-state gas flow 
models (Liu, Shahidehpour and Wang, 2011; Jiang 
et al., 2023; Su et al., 2022) offer high accuracy, 
they require numerous parameters, such as 
operating temperature, gas composition, altitude 
changes and pipeline roughness, making them 
computationally expensive, especially for large 
transnational NGTP networks. Graph-based flow 
algorithms, like Floyd’s algorithm (e.g., see (Su et 
al., 2018a)), compute maximum network capacity 
between virtual super-sink and super-source nodes, 
but fail to consider priority differences among gas-
receiving terminals during disruptions. 

In fact, NGTP networks span multiple 
countries, and therefore, pipeline failures can 
disrupt gas supplies across borders affecting 
multiple parties. For example, Norwegian 
Continental Shelf pipelines supply over 25% of the 
EU gas market, with delivery points at Germany, 
Belgium, and France, from which gas is further 
exported to the Netherlands and Denmark 
(Norskpetroleum, 2025). In addition, nationally, 
different gas-receiving terminals may be more 
vulnerable to gas supply disruptions and must 
therefore be prioritised for protection and 
resilience. 

Supply shortages or extended downtimes 
force producers to either buy extra gas downstream 
or pay penalties for contract violations (Rømo et 
al., 2009). The impact depends on alternative 
supply availability and the location of receiving 
terminals within the extensive transmission 
network where the supply shortage must be 
addressed. Therefore, optimising network flow 
requires node importance measures and 
differentiated penalty schemes in addition to the 
operating cost considerations, which conventional 
graph-based flow algorithms do not often provide. 

This work introduces a modelling and 
computational framework that integrates node-
importance-based flow optimisation and a multi-
component, multi-state network Markov chain 
model, solved using Monte Carlo (MC) simulation. 
The proposed framework leverages graph theory 
(Gross, Yellen and Anderson, 2018) and complex 
network analysis to estimate the optimised network 
flow in a NGTP system represented as a directed 
graph, whose topology and functional 
characteristics evolve stochastically over time due 
to the random nature of damage and recovery 
processes affecting network components 
functionality and flow capacity.  

This framework can be applied for the 
operational management of gas networks, for 
enhancing the supply resilience in response to 
network disruptions. 

The rest of the paper is organised as follows. 
Section 2 introduces the proposed computational 
framework, detailing its key elements, including 
the network flow optimisation model and the 
network state transition simulation framework. 
Section 3 illustrates the application of the 
framework through a case study. Section 4 presents 
conclusions and suggestions for future work. 

2 Modelling and Computational Framework  
The proposed modelling and computational 
framework consists in two main parts: A node-
importance-based flow optimisation model, and a 
MC simulation-based framework where network’s 
stochastic evolution is modelled.   

2.1 Network Flow Optimisation Model 
Let us consider an offshore NGTP network, where 
gas can flow in only one direction. A directed graph 

 (Gross, Yellen and Anderson, 2018) is 
used to model the network with nodes , 
representing the receiving terminals, and 
production or supply facilities, and edges 

, , , representing network pipelines. 
Further, let   and  denote a set of 
demand nodes (i.e., onshore gas delivery terminals) 
and offshore production facilities, respectively.  

Production facility  has a maximum 
production capacity of  and gas-receiving 
terminal  has a desired demand  that 
needs to be satisfied by the network. Physical and 
functional characteristics of network components 
are represented by node and edge attributes. Let 

, ,  denote the length, maximum capacity 
and gas flow rate of pipeline , respectively. It 
is assumed that network nodes cannot fail and 
transition rates  are used for the stochastic state 
transition process of network pipelines.  

 A (partial) failure of network pipelines can 
reduce the pipeline flow capacity, affecting the 
total network flow. This can result in a partial loss 
of capacity, causing the failure to meet the desired 
demand at gas-receiving terminals, leading to 
unmet demand penalties. The optimisation model 
aims to optimise the re-dispatch of natural gas in 
the network pipelines while minimizing total 
operating and penalty costs, and ensuring that the 
network’s maximum capacity is utilised. The 
optimisation is modelled as  
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where

The first term of Eq. (1) represents the 
network transportation cost, where and are 
length and transportation cost per unit of flow-
length of pipeline , and is the flow of 
pipeline at time . The second term, repre-
sents the penalty of gas undersupply at gas-
receiving terminals , where is penalty 
cost per unit of flow for undersupplied gas at gas-
receiving terminal indicating node 
importance, and is the desired amount of gas at 
the respective terminal at time . The third term 
expresses a dummy penalty cost to ensure that the 
network uses its maximum production capacity at 
time , with being a sufficiently large penalty 
factor. The optimisation problem constraints are 
given by Eqs. (2) and (3),

where Eq. (2) ensures the conservation of flow at 
gas-receiving terminals and intermediate nodes,
with and 

being the set of successors and 
predecessors of node , respectively. is the 
demand of node at time , which is zero for 
intermediate nodes and the desired demand at 
respective receiving terminal. Eq. (3) states that the 
flow of each pipeline at time is non-negative and 

bounded to the pipeline’s maximum capacity at 
time . Eq. (4) states that conservation of flow at 
the production facilities with being the amount 
of unproduced gas at the respective facility, and Eq. 
(5) states that this value is non-negative and 
bounded to maximum production capacity of the 
respective facility, .

2.2 Monte Carlo Simulation of the Network 
Stochastic Process

The flow capacity of an NGTP network and its 
ability to meet gas demands at receiving terminals, 
depend on its topology and functionality that are 
determined by the states of the network’s elements.
The resulting network’s state, determined by the 
combination of the states of the network’s
components, evolves over time due to stochastic 
transitions of the states of the states of the 
components. The stochastic process of transition 
among network states is simulated using the MC 
simulation technique (Zio, 2013). By solving the 
network flow capacity model for the stochastically 
evolving network’s states, the optimised network 
flow and the amount of gas delivered to receiving 
terminals can be obtained.

While there are various pipeline failure 
modes, almost 60% of offshore oil and gas 
pipelines failures are corrosion-related (Revie, 
2015) and can be categorised into small leakage, 
large leakage and rupture (Ma et al., 2023).
Correspondingly, we consider five different states 
for each pipeline, namely operational ( ), small 
leakage ( ), large leakage ( ), rupture ( ) and 
state denoting all other failure modes. 

The Markov Chain model, presented in Fig. 1 
describes the stochastic transitions of the pipeline 
states. Assuming the pipelines’ times of transition 
among states are exponentially distributed, the 
constant transition rates can be estimated using 
historical data. Eq. (6) presents the pipeline ’s
constant transition rate matrix. 

Fig. 1. Markov chain model representing the stochastic 
transitions of pipeline ’s states
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As given by Eq. (6), small leakages may 

develop into large leakages with transition rate , 
or cause a pipeline rupture with a transition rate of 

. Similarly, a large leakage may cause a pipeline 
rupture with a transition rate . Repair processes 
are described by constant repair rates, , , 

 and  which denote the rates of return to 
operation from small leakage, large leakage, 
rupture and other failures, respectively. 

 

 

Network random walks in time are simulated 
using an indirect MC sampling method. This 
involves first sampling the time  of the network 
transition, followed by sampling the network’s 
next configuration by identifying which pipeline 
has undergone a transition and its new state.  

This process is repeated until the mission time 
is reached. For the detailed illustration of MC 
simulation for sampling system state transitions see 
(Zio, 2013).  

Pipeline capacities at time , , depend on 
their state and are defined as a fraction of pipeline’s 
maximum capacity,   

 
where  is a state-dependent capacity 
correction factor and  is 
the state of pipeline  at time . Whereas 
ruptures and other failures result in total loss of 
pipeline capacity, we assume, without loss of 
generality, that small and large leakages lead to 
10% and 50% reduction in pipeline capacity, 
respectively.  

The flowchart presented in Fig. 2 illustrates 
the step-by-step procedure for simulating network 
stochastic transitions and optimising the network 
flow at each transition time given the new network 
configuration. First, the optimised flow of network 
pipelines, , is computed using the flow 
optimisation model for the original network at time 

, assuming all pipelines are in operational 
state . Next, the system transition time , the 
transitioning pipeline  at time  and its new 

are simulated. Pipeline capacities, and 

consequently, the network topology are updated at 
time . The flow optimisation model is then 
reapplied to the updated network configuration. 
This process is repeated until horizon time  is 
reached, providing the network flow at each time 
step for each simulation run. Once a sufficiently 
large number of simulations have been performed, 
the average network flow over time is obtained by 
averaging the network flow values across all runs. 

 

 
Fig. 2. Computational framework for network supply 

resilience of NGTP networks 

3 Illustrative Example 
To illustrate the proposed framework, we consider 
a hypothetical offshore NGTP network comprising 
four production platforms—nodes 0, 1, 2 and 3—
with maximum production capacities of 20, 75, 80 
and 25 MMCMD, respectively. The network also 
includes four gas-receiving terminals—nodes 12, 
13, 14 and 15—with respective demands of 20, 50, 
70 and 60 MMCMD. As shown in Fig. 3, the 

Initialise pipeline states  and their 
capacities    (Eq. (7))

Sample system transition time  

Sample pipeline that has caused network state 
transition at  

Sample the new state of pipeline  at ,   

Update pipeline capacities at time 
  (Eq. (7))

Update network flow at  
: 

Record  for time interval  and update 

Record  

Yes 

No 

Update network flow: 
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network consists of 18 pipelines, with their lengths
and maximum capacities are presented as

.
In 2023, the Norwegian Continental Shelf 

(NCS) gas pipeline network, consisting of 27 
pipelines over 8,800 km, exported 116 billion m³ 
of natural gas, generating NOK 628 billion in 
revenue, with an OPEX of NOK 7.223 billion 
(GASSCO, 2023). Based on this, the transportation 
unit cost, , is estimated as 40 €/MMCM-km for 
all pipelines and the export gas price, , at 
474,062 €/MMCM. The unmet demand penalty 
cost is obtained by scaling the gas price value by a 
vector of node importance factor of [1.5, 1.1, 1.8, 
1.0] for gas-receiving nodes 12, 13, 14 and 15, 
respectively. 

Fig. 3. Illustration of the hypothetical network

For offshore gas pipelines, corrosion accounts 
for 65% of failures (Revie, 2015) (assuming 35% 
small leaks, 20% large leaks, 10% ruptures), 
whereas other failures make up 35%. Small leaks 
may further escalate into large leaks or ruptures 
with a 10% probability each, and 10% of large 
leaks may lead to ruptures. Using such information, 
and assuming exponentially distributed failure and 
repair times, and assuming mean-time-to-repairs of 
2, 5, 6 and 6 weeks for small leakages, large 
leakages, ruptures and other failures, respectively,
and a pipeline transition rate of 0.48 failures per 
1000 km-year, the pipeline transition rates are 
derived as presented in Table 1.

Table 1. Pipeline transition rates
(# failures/h) (# failures/h)

1.9250E-08 3.7202E-04
1.1000E-08 3.7202E-04
5.500E-08 1.3228E-04
1.9250E-08 2.9762E-3
1.1905E-3 9.9206E-4
9.9206E-4

3.1 Results and Discussion
Fig. 4 shows the network flow over five years
using 5E4 simulation runs. The maximum 
capacity of the network in fully operational state
is 200 MMCMD. The average network flow,
which is the total gas received at receiving 
terminals, collectively, is 196.11374 (±0.06302) 
MMCMD, with transportation and penalty costs
of 4.61104 (±0.00149) and 2.11986 (±0.03313) € 
million, respectively (see Figs. 5 and 6).

Fig. 4. Total network flow in million cubic metres per 
day (MMCMD)

Fig. 5. Gas transportation cost in million euros

Fig. 6. Total penalty cost over time for undersupplied 
gas at receiving terminals, in million euros
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Fig. 7 shows the amount of gas received at 
individual terminals, which is lower than the 
respective desired amounts due to the stochastic 
transitions of gas network pipeline states. As 
these transitions affect pipeline flow capacities, 
some gas shortages occur at the receiving 
terminals (see Fig. 8). The reduction in network 
capacity must be adjusted by production 
platforms while considering the relative 
importance of supply to gas-receiving terminals. 
Such production deficits are illustrated in Fig. 9 
for individual production platforms. However, 
adjusting production flow rates may be 
constrained by physical characteristics of 
production platforms and reservoir behaviours. In 
such cases, the dummy penalty cost factor  
(see Eq. (1)) may be adjusted to account for these 
constraints.  

 
 

 
Fig. 7. Flow (in MMCMD) at gas-receiving terminals 

 

 
Fig. 8. The amount of unmet demand at gas-receiving 

terminals (in MMCMD) (Scenario 1 with node 
importance factors of [1.5, 1.1, 1.8, 1.0]) 

 
The results presented above correspond to 

node importance factors of [1.5, 1.1, 1.8, 1.0] 
(Scenario 1), clearly demonstrating that the gas 
supply optimisation framework prioritises nodes 
12 and 14 over nodes 13 and 15 (Figs. 7 and 8) 
when re-dispatching flow through the network.  

 
Fig. 9. Flow deficits at production platforms to adjust 

the maximum allowable flow through the network  
 

To further illustrate this, Scenario 2 is 
considered with node importance factors of [1.0, 
1.2, 1.0, 1.5]. Under this scenario, gas supply is 
prioritised for nodes 13 and 15 (see Fig. 10). 
Table 2 compares transportation and penalty 
costs, network flow rate, as well as production 
and demand deficits for both scenarios.  

 
 

 
Fig. 10. The amount of unmet demand at gas-

receiving terminals (in MMCMD) (Scenario 1 with 
node importance factors of [1.5, 1.1, 1.8, 1.0]) 

 
As presented, the undersupply of gas exhibits 

considerable variability across receiving 
terminals, corresponding to their importance 
factor. For instance, under Scenario 1, gas-
receiving terminals 12 and 14 are more important 
than terminals 13 and 15, and consequently, the 
undersupplied gas at these terminals accounts for 
only 6.8% and 14.6% of the total network flow 
loss, respectively, whereas under Scenario 2, the 
undersupplied gas at these terminals accounts for 
6.8% and 60.2% of the total network loss, 
respectively.  
Gas-receiving terminal 12 in both scenarios has a 
similar unmet demand share, which is attributed 
to the network structure. In other words, there is 
limited possibility for the network to re-dispatch 
the flow that arrives at intermediate 9, whereas, 
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for instance, intermediate nodes [4, 5, 7, 10, 11] 
provide more flexibility for the network flow 
from production platforms 1 and 2 to gas-
receiving terminals 13 and 14.

Table 2. Statistics of network flow and costs for 
Scenarios 1 and 2 with node importance factors of 
[1.5, 1., 1.8, 1.] and [1.0, 1.2, 1., 1.5], respectively

Scenario 1 Scenario 2
Total Network 

Flow*
Mean STD Mean STD

196.1137 0.0630 196.1306 0.0552
Transportation

Cost**
Mean STD Mean STD

4.61104 0.0015 4.6113 0.0013
Penalty 
Cost**

Mean STD Mean STD
2.11986 0.0331 2.0932 0.0293

Node Unmet Demand Unmet Demand
Mean STD Mean STD

12 0.2646 0.0085 0.2622 0.0109
13 1.6723 0.0396 0.3719 0.0157
14 0.5664 0.0167 2.2920 0.0437
15 1.383 0.0319 0.9433 0.0197

Node Production Deficit Production 
Deficit

Mean STD Mean STD
0 0.2206 0.0104 0.2185 0.00806
1 2.2175 0.0490 2.2108 0.0376
2 0.9943 0.0323 0.9835 0.0297
3 0.4539 0.0143 0.4565 0.0115

* MMCMD ** € Million

As presented, the undersupply of gas exhibits 
considerable variability across receiving 
terminals, corresponding to their importance 
factor. For instance, under Scenario 1, gas-
receiving terminals 12 and 14 are more important 
than terminals 13 and 15, and consequently, the
undersupplied gas at these terminals accounts for 
only 6.8% and 14.6% of the total network flow
loss, respectively, whereas under Scenario 2, the
undersupplied gas at these terminals accounts for 
6.8% and 60.2% of the total network loss, 
respectively. 

Gas-receiving terminal 12 in both scenarios 
has a similar unmet demand share, which is 
attributed to the network structure. In other words, 
there is limited possibility for the network to re-
dispatch the flow that arrives at intermediate 9,
whereas, for instance, intermediate nodes [4, 5, 7, 
10, 11] provide more flexibility for the network 
flow from production platforms 1 and 2 to gas-
receiving terminals 13 and 14.

4 Conclusions and Suggestions for Future 
Work

We have proposed a modelling and computational 
framework for estimating the supply of a NGTP 
network, considering the relative importance of 
supply at different gas-receiving terminals while 
minimizing the total gas transportation and 
penalty costs. The framework integrates methods
like graph theory and flow optimisation within a
multi-component multi-state Markov chain model 
of the NGTP network. An indirect MC sampling 
approach is used to simulate different failure 
modes and repair processes of the network 
pipelines, and their flow capacities and stochastic 
evolution of network configurations.

The case study demonstrated the 
framework’s effectiveness in re-dispatching 
network flow to reduce total transportation and 
undersupply penalties while prioritising gas-
receiving terminals based on their relative 
importance.

Future work will focus on refining the 
framework by incorporating a more detailed 
analysis of corrosion processes and their 
associated failures, as well as considering 
stochastic gas flow characteristics such as 
pipeline pressure profiles and the inclusion of
compressor stations to compensate for pressure 
drops along the pipelines. Additionally, we will 
explore strategies for optimising operation and 
maintenance decisions to enhance network 
capacity and overall gas supply resilience.
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