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In this paper, we explore the use of wireless smart sensors in railway systems, focusing on the concept of ”smart
gravel” - a system that embeds wireless sensors within the ballast to monitor track conditions. We first provide an
overview over the landscape by highlighting reviews from other authors on the topic. We then explore the topics
embedded AI, and energy harvesting in the rail domain by reviewing existing literature. Following we are discussing
works from other authors which came the closest to realising the idea of smart gravel. Through a comprehensive
review of the existing literature, we identify the key challenges in the field, including the need for open datasets in
research, more and longer field tests and the adoption of MEMS sensors in the railway industry. Possible research
gaps according to our findings are the development of dependable smart gravel systems as well as bringing federated
learning into the picture for railway monitoring.
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1. Introduction

Railway systems are essential for freight and pas-
senger transport, providing a sustainable alterna-
tive to road travel (Singh et al. (2022)). However,
increasing traffic and network expansion chal-
lenge infrastructure safety. Tracks, ballast, and
substructures degrade due to wear, environmen-
tal stress, and usage. Early fault detection pre-
vents accidents, reduces costs, and extends rail-
way lifespan (Phusakulkajorn et al. (2022)). Wire-
less sensor systems offer solutions beyond predic-
tive maintenance, including fault detection, train
arrival warnings, and crossing security. This paper
examines the potential, capabilities, and limita-
tions of wireless smart sensors in railway systems.

1.1. Smart Gravel

Wireless technologies simplify railway monitor-
ing by replacing cables and reducing maintenance
complexity. One innovative approach is ”smart
gravel”, embedding wireless sensors in ballast
to monitor pressure, vibrations, and track move-
ments (Fraga-Lamas et al. (2017)). These sensors

are designed for easy placement without fasteners.
While smart gravel remains a technological

challenge, this paper reviews key enablers such
as low-power wireless communication, embedded
AI (Artificial Intelligence), and energy harvesting.
Relevant literature and the current state of the art
are discussed.

In this review, we are focusing on the following
research questions:
1. Which demonstration cases exist in the scien-
tific literature which can act as a role model for
Smart Gravel?
2. Which AI techniques are successfully used in
trackside applications in the rail sector?
3. Which ways to power sensor nodes on the rail
track are successfully used in which applications
in the rail sector?

1.2. Methodology

This review focuses exclusively on articles from
the railway domain that address trackside sensors,
excluding sensors installed on rolling stock. To
make sure we have an overview over the topic
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we begin by discussing related reviews. Their
niches, structure and main findings are compared
and issues they found in their reviewed works are
discussed. In the subsequent chapter, publications
from the rail sector that integrate AI into track-
side sensors are analyzed based on their goals,
major achievements, and challenges faced. Fol-
lowing that, the next chapter examines Energy
Harvesting solutions, comparing them in terms
of their energy output in a rail scenario. The fi-
nal part of this review is dedicated to examining
existing articles that have attempted to develop
systems similar to the concept of smart gravel.
These works are also compared using the criteria
already mentioned (objective, key achievements
and encountered challenges).

We will not take into account aspects like data
compression and communication (protocols), al-
though for the idea of smart gravel it is important.

2. Related Reviews

Several reviews have come up in the last years
concerning the concepts of Smart Gravel. A few
of them should be named here to give an overview
and resource for further reading. Some are more
concentrating on the high level view, some more
on the energy supply, they combined give a good
picture about the foundation works for the smart
gravel concept. The overview can be seen in table
1.

However, to the best of the authors’ knowledge,
there is a lack of a structured review specifically
focusing on the concept of smart gravel. This
paper aims to fill this gap by providing a compre-
hensive review of the core components of smart
gravel, including AI, and energy harvesting, in the
following thereby named chapters.

2.1. AI

In the reviewed works concerning the applica-
tion of AI (an overview can be seen in table
2), there is significant interest in detecting track-
related events, such as ensuring track clearance to
safeguard crossings and warning of approaching
trains. Predictive maintenance is also a key focus,
as it is more feasible for a rail network operator
to equip the network with sensors for detecting

defective rolling stock than to equip each train
individually with sensors.

The reviewed articles cover a range of data
sources, including acceleration data, audio data
and strain gauge measurements. The majority of
studies employed acceleration data for classifi-
cation purposes, frequently using Support Vector
Machines (SVMs) due to their efficient inference
and Neural Networks for their generalization ca-
pabilities.

The use of preprocessing techniques like
Gramian Angular Fields and Wavelets for defect
detection (Krummenacher et al. (2017)) and the
application of Fast Fourier Transforms for train
detection (Ardiansyah et al. (2018)) were em-
ployed to enhance classification performance. As
a Smart Gravel device is constrained in the avail-
able computing resources, these feature engineer-
ing techniques can play a crucial role in enabling
AI-based railway monitoring.

2.1.1. Challenges

Many studies, such as those by Krč et al. (2020),
Lee et al. (2016), and Ardiansyah et al., faced
the challenge of small datasets, which limit the
generalization of their results. This issue is exac-
erbated when data is only gathered from a single
location, as seen in the works of Saputro et al.
(2022) and Ardiansyah et al. This can also serve
as an explanation of the claimed accuracy of 100%
in the works of Ardiansyah et al. as this could be
credited to overfitting then.

While AI techniques in railway monitoring
show significant promise in the lab, they are still
hindered by the availability of datasets. Most of
the authors of the papers examined in this work
had to create their own dataset due to a lack
of openly available datasets. To the best knowl-
edge of the authors there are no openly available
datasets of trackside one dimensional data for rail-
way monitoring available.

The periods for testing the approaches in all the
reviewed articles were very limited, often only for
a few hours. This is another hurdle which limits
the generalizability of the results. To develop de-
pendable monitoring equipment it is necessary to
test it over a long period of time and in different
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Publication (Review) Niche of Review Structure Main findings Issues pointed out

Hodge et al. (2014)

Wireless sensor
networks for condition
monitoring in the rail-
way industry: A survey
(Hodge et al. (2014))

Condition Monitoring in the
Railway Industry using Wireless
Sensor Networks, emphasis on
practical engineering solutions.

divides between fixed (on infras-
tructure) and movable (on rolling
stock) monitoring ap-
proaches; gives an overview about
sensors used for railway condition
monitoring

points out that there are still is-
sues in routing and energy sup-
ply especially in inaccessible lo-
cations

M. Bosso et al. (2021)

Application of
low-power energy har-
vesting solutions in the
railway field: a review
(Bosso et al. (2021))

Explores low-power energy har-
vesting techniques for powering
sensors in rail applications

divides between sources of energy
(vibration, electromagnetic, ther-
mal, wind, solar), further by track-
side or movable

most successful source of en-
ergy in rail environments is vi-
bration; piezoelectric and elec-
tromagnetic harvesters are a so-
lution, but they have to be tuned
to the corresponding frequencies

efficient energy storage systems
are still a challenge; geared de-
vices should be avoided to pro-
vide longevity

Castillo-Mingorance

et al.

A critical review of
sensors for the con-
tinuous monitoring of
smart and sustainable
railway infrastructures
(Castillo-Mingorance
et al. (2020))

Reviews and compares sensors
for predictive maintenance of
railway infrastructure to prevent
failures,

Presents Strain Gauges, Piezoelec-
tric Sensors, Fiber-Optic Sensors,
Geophones and Accelerometers;
discusses case studies in which
each of them were used and dis-
cusses their pros and cons.

Strain gauges and optical fiber
sensors provide very accurate re-
sults, however they are costly;
Piezoelectric sensors and ac-
celerometers are cheap and ac-
curate; Best fit for track monitor-
ing are piezoelectric, accelerom-
eter or fiber optic sensors

High costs for advanced sen-
sors; sensors need to be econom-
ically viable and technically ro-
bust; durability and resilience to
environmental factors is still an
issue (e.g., electromagnetic in-
terference, temperature changes,
vandalism).

Fraga-Lamas et al.

Towards the Internet of
smart
trains: A review on in-
dustrial IoT-connected
railways (Fraga-Lamas
et al. (2017))

High Level survey of relevant
technologies for smart railway
infrastructure, including safety
systems.

Discusses Com-
munication Systems in and around
trains as well as in infrastructure,
gives and overview over GSM-R
and from that introduces LTE-R,
the successor; Proposals for more
efficient Operations to New Busi-
ness Models are given;

LTE and IoT technologies are
transforming railways with im-
proved safety and operations;
Key applications include predic-
tive maintenance, smart infras-
tructure, and advanced monitor-
ing.

Smart Railways are challenged
by the lack of standardization,
interoperability and scalability
issues, energy efficiency and the
thread of cyber security

Table 1: Overview of Related Works

locations making sure the results are stable.

2.2. Energy Harvesting

In this section we will look at the different ways
to power the sensor nodes. At the end of this sec-
tion, table 3 shows an overview of the considered
harvesting methods in an example scenario.

Only trackside methods with zero moving parts
are considered here to maximize longevity. Tri-
boelectric harvesters and acoustic harvesters are
excluded for now for space reasons but will
be included in a later publication. Calculations
for piezoelectric and electromagnetic harvesters
are first estimates, depending on train speed and
weight.

2.3. Piezoelectric Energy Harvesting

Piezoelectric harvesters convert mechanical vibra-
tions or pressure into electrical energy; rail-bed
mounting is common. These harvesters (al well
as electromagnetic ones) generate electricity only
when trains pass, which can be expressed as

nactivations = ntrains · naxles (1)

Literature shows a wide range of power out-
puts. Bosso et al. (2021) list railside devices from
150μW to 588 mW, Qi et al. (2022) list from
119 mW to 39.1 W. Many works provide peak
power with limited field data. Tianchen et al.
(2014) harvested 2.08 mWs (lab scale, 16 trans-
ducers). Wischke et al. (2010, 2011) measured
260–395μWs on real tracks. Differences arise
from train types, lab vs. field conditions, and
rail environments. Shan et al. (2023) demon-
strated a high-power, robust piezoelectric stack
energy harvester that converts track vibrations into
electrical energyclaiming to providing a sustain-
able power source for wireless sensor networks
(WSNs). However the authors did not provide any
information about the the expected energy return
by a passing train, which would be very useful for
the design of a Wireless Sensor Network (WSN)
powered with this harvester.

2.4. Electromagnetic Energy Harvesters

Electromagnetic harvesters use a magnet-coil ar-
rangement to generate electricity from rail vi-
brations. Hou et al. (2018) report 257 Ws per
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Publication Objective Key Achievements Challenges

Krč et al. (2020) Neural network-based train type identi-
fication (5 classes) using accelerometer
data from switches and crossings (S&C)
recorded with a cheap Accelerometer
(ADXL345)

Classification was possible, accuracy up
to 80%; Paper showed that CNNS de-
liver the best results and can generalize
the identification problem of train types
in switches and crossings to other loca-
tions

Small datasets (two locations) and sensi-
tivity to noise; author proposes more so-
phisticated architectures; better results
are expected with more data.

Lee et al. (2016) Developing a cost-effective method for
detecting and diagnosing faults in rail-
way point machines using audio data;
test their setup by different simulated
errors on their testbed. Uses MFCC and
SVNs for classification

Classification was possible but with a
very small dataset. Accuracy up to 97%

dataset too small; dependent on the po-
sition of the microphone;

Saputro et al. (2022) They developed a train detection system
to verify clear tracks. IMU data and a
neural network was used and the system
was tested in a real rail environment.
With this work they want to avoid short-
comings in axle counters and track cir-
cuits which the mainly used method of
train detection nowadays.

They showed that classification of IMU
data in an embedded rail environment
is possible. With a BNO055 IMU and a
raspberry pi they archived a 94% accu-
racy

Detection is not accurate enough for
production, data was only gathered from
one location. Only a html page of their
work is available, images are missing,
which makes understanding their work
hard.

Ardiansyah et al. (2018) Build a warning system for an approach-
ing train for safeguarding railroad cross-
ings without guards. For that they used
an accelerometer, a Fast Fourier Trans-
form and a Neural Network

They claim to archieve 100% accuracy
of detecting an approaching train with a
distance of 45 meters; they give exam-
ples of vibration patterns for cars, trains
motorcylces and trucks

Dataset is extremely small (small two
digit number). Also they measured at
only one location, so there is little gen-
eralization possible

Krummenacher et al.
(2017)

Developed classifiers for defect de-
tection on railway train wheels using
SVMs and DNNs and by modeling the
multi sensor structure of the datasource;
Strain gauges were used for measuring a
signal of a passing train

They build their own dataset in coopera-
tion with the swiss train operator SBB
and did tests on artificially damaged
wheels; GAF (Gramian Angular Fields)
and Wavelets were used as preprocess-
ing; Their system was intended for de-
ployment in the Swiss railway network.

Data labelling was a problem. As the
data was from the field, it was not al-
ways clear under which circumstances
it was recorded (e.g. orientation of the
wheel).

Table 2: AI Techniques:Overview of Publications in Railway Monitoring

passing metro train (bridge setting). Gao et al.
(2018) report mean and max power of 45.5 mW
and 550 mW, respectively, with a train pass taking
0.375 s per wagon at 250 km/h. Calculating per
axle yields about 17.63 Ws. For a 12-car train, that
corresponds to 819 Ws, which is lower than Hou
et al.’s 3084 Ws Hou et al. (2018) but provides a
realistic range.

2.5. Thermal Energy Harvesters

Thermoelectric harvesters rely on the Seebeck ef-
fect, using the temperature gradient between rail
and ballast. Gao et al. (2019) report a maximum
of 5.8 mW for an 8 °C gradient in field tests,
producing about 46 mWh/day for 8 h of such a
gradient. Seasonal and regional variations limit
this technique’s reliability.

2.6. Photovoltaic Harvesters

PV cells can provide > 25mW/cm2 under op-
timal conditions Shen et al. (2024), but output
is highly variable and subject to dust pollution.
Using PVGIS European Commission (2023) data

for northern Germany (lowest solar months Nov–
Jan) yields about 29.2 kWh/kWP in three months.
This implies a sensor must not exceed 29.2 Wh
per installed Wp in that period. Dust accumula-
tion on trackside PV (about 1.369 g/m2/year over
a decade) can cause up to ∼34% power loss
Lorenzo et al. (2007); Hachicha et al. (2019);
Chen et al. (2019); Hussain et al. (2017). Track-
side pollution from train operations exacerbates
this effect.

Harvesting Technique Total Energy Estimation

Piezoelectric Energy Harvesting 130 - 395 μWs per axle
Electromagnetic Energy Harvesting 819 Ws (12-car train)
Thermal Energy Harvesting 208.8 Ws per day
Photovoltaic Energy Harvesting 288 Ws/WP per day

Table 3: Energy Estimations from Literature for different Har-
vesting Techniques

A publication by the authors of this work is
currently under preparation, providing a detailed
review of energy needs and harvesting possibil-
ities for small trackside sensors. This paper will
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include a method to estimate pollution at a rail line
and its impact on solar performance.

2.7. Contributions near to the concept of
”Smart Gravel”: Using MEMS
Sensors for rail infrastructure
monitoring

MEMS (Micro-Electro-Mechanical Systems) ac-
celerometers have been extensively used to mea-
sure vibrations and dynamic behaviors in railway
tracks, an overview of the most important works
of the last years can be seen in table 4. For
example, Milne et al. (2016) demonstrated the
successful use of MEMS accelerometers like the
ADXL335 and ADXL326 to detect track displace-
ments during passages of rail cars. They compared
the cheap MEMS devices with state of the art
piezoelectric sensors and geophones in lab test
as well as in a field test. Results indicate that
the frequency and amplitude of vibrations agree
between MEMS accelerometers and piezoelectric
sensors / geophones. Their study highlighted the
ability of these sensors to operate at low power
while delivering highly accurate data regarding
track behavior under various loads and be very ro-
bust in the same time. As the scope of the authors
was just the comparison, they did not have a use
case for the measurements in their study.

Fig. 1. Comparison of MEMS accelerometers and
geophone done by Milne et al. Milne et al. (2016).

Similarly, Stenström et al. (2017) tested
ADXL326 accelerometers in heavy haul railway
settings by building a prototype for a smart sen-
sor. They demonstrated that MEMS technology
can effectively measure sleeper displacement un-
der train axle loads, providing reliable data for
condition-based maintenance. However his proto-

type was just for data aquisition, not for classifi-
cation of the acceleration data. The study showed
promising results in measuring displacements,
aligning with laboratory tests and existing lit-
erature. However, the paper could benefit from
providing more information on the methods and
results.

Berlin and Van Laerhoven (2013) did a study
on the vibration patterns caused at the rail track
by passing trains. They used a WSN to moni-
tor trains by analyzing vibrations caused by their
movement along railway tracks. Small, robust,
and inexpensive sensor nodes were deployed on
the tracks, equipped with 3D accelerometers to
capture vibration data. The nodes processed the
data locally using features like vibration duration,
amplitude, and patterns. These features were used
for a classification of train types and estimation
of train lengths with a Support Vector Machine
(SVM), achieving a high accuracy of up to 97%
according to the authors. They also came to the
conclusion that there is potential to estimate the
train speed and detect worn-out cargo wheels,
however the scope of the study was not including
showing that. What is to note is that they only
measured at one location, meaning they would
not have seen different data characteristics due to
different soil conditions.

Fig. 2. Prototype for train monitoring done by Zhao
et al. (2021).

Zhao et al. (2021) extended the work of Berlin
et al. by developing a system to continuously
monitor train parameters such as speed and the
number of carriages also using a MEMS-based
accelerometer. The sensor was placed on the rail
to capture vibration data caused by passing trains.
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This data was processed locally using a Fast
Fourier Transform and a careful selected set of
features by which the speed of the train could
be estimated. Their paper features an extensive
comparison between different equipment to use in
the sensor nodes and their impact on the power
consumption, e.g. microprocessors, communica-
tion chips and sensors. Their work also provides a
justification for the choice of sampling rate for an
accelerometer mounted on the rail, recommending
a minimum of 3.2 kHz. However the authors had
special knowledge about the trains running on
the track and did only measure in one specific
location. The possibility of other signal properties
because of other nature of the soil was excluded in
their work. They also excluded interferences with
other rail lines by placing the sensors on positions
where the distance to the next rail line is maximal.
Also their requirements were that “it was required
that the rail at the sensor position be free of obvi-
ous damage, cracks, and pollutants, that fasteners
be of normal tightness, that sleepers do not sink,
and that the position be normal.” The processed
results are transmitted to a cloud server via a low-
power NB-IoT network. A solar-powered module
ensures the device operates continuously without
external power, however they did not go into detail
about the feasibility of solar energy harvesting
yeararound nor did they address the potential im-
pact of pollution on the solar cells. This publica-
tion is to the best of the authors knowledge the
closest to the idea of smart gravel up to now.

3. Conclusion

In conclusion, the concept of Smart Gravel has the
potential to revolutionize railway monitoring and
maintenance practices. Our review of the literature
has highlighted key technologies, including AI
techniques and energy harvesting techniques. We
have also identified the challenges and research
gaps in the field, including the availability of
datasets, the missing adaptation of MEMS sensors
in industry, and the need for long-term tests.

The use of AI techniques in track-side mon-
itoring has shown significant promise, with ap-
plications in detecting track-related events, such
as ensuring track clearance to safeguard crossings

and warning of approaching trains. However, the
reviewed articles have also highlighted that more
openly available datasets are needed for train-
ing and testing AI models. Also, the tests in the
field should be held longer to get an idea of the
challenges of smart gravel systems in long term
deployment.

In terms of energy harvesting, we presented the
most promising techniques, including piezoelec-
tric, electromagnetic, thermal, and photovoltaic
energy harvesting. Notable is the steady output
of power by thermoelectric harvesters and the
high yield but also high variance o photovoltaic
harvesters. Piezoelectric and electromagnetic har-
vesters are promising for rail monitoring. How-
ever, they often need to be tuned to specific vi-
bration frequency ranges, which are not always
steady in the real world, further highlighting the
need for longer field tests.

3.1. Research Gaps identified

A research gap is believed to be existent concern-
ing the dependability of smart gravel systems. In
the long run, it is possible that information from
WSNs in the field play a role in decisions which
can harm passengers (e.g. dependable localization
of trains). To address this need, smart gravel or
WSNs in general can be viewed as a safety rele-
vant system. This poses significant requirements
to the sensor nodes and the network as a whole
especially if AI is involved. To the best of the
author’s knowledge no article focussed on this was
published so far. To navigate these waters can be
of interest to the next years of research in the field.

Another research gap is believed to be in the
connection of smart gravel and federated learn-
ing. It has become clear from this review that all
the works carried out currently were training and
testing their algorithms at data from one specific
location. From other disciplines (e.g. geology) it
is known that the propagation and reflection of
seismic waves differ from one type of soil to the
other. This makes it substantially harder to train a
classifier, e.g. for train localization, which works
on train tracks at all locations. The concept of
federated learning can help here while keeping the
advantage of independent sensors alive, eliminat-
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Publication Objective Key Achievements Challenges

Milne et al. (2016) They want to provide evidence for the
use of cheap MEMS accelerometers in-
stead of expensive geophones and piezo-
electric sensors by doing laboratory tests
as well as field tests.

Demonstrates MEMS accelerometers are suitable
for cost-effective track displacement and vibra-
tion monitoring by comparing them with high
quality sensors; Also did further field tests by
comparing a cheap MEMS accelerometer with
a geophone; results show that cheap MEMS ac-
celerometers and geophones aggree on frequency
and amplitude, however the MEMS accelerome-
ter is noisier; MEMS accelerometers can be used
instead of a geophone for trackside monitoring

Field test was not carried out over longer
periods; MEMS accelerometer is nois-
ier; Scope of the study was just the com-
parison, so no use case for the measure-
ments in their study;

Stenström et al.
(2017)

measured sleeper displacements with
ADXL326 accelerometers in heavy haul
railway including building a prototype.

provides valuable information for building a
smart sensor system, including comparison of
different MEMS accelerometers and Microcon-
trollers and a discussion on timing regarding data
gathering; provides a discussion about power us-
age in a smart sensor including the use of a wake-
on-shake module in the prototype; Field tests
indicate that cheap MEMS sensors can be used
for rail monitoring.

Field test was not carried out over longer
periods, therefore the results are not
analysed regarding temporal artefacts;
no analysis or classificationdone on the
sensor, just data gathering

Berlin and Van Laer-
hoven (2013)

Monitor trains via vibration analysis us-
ing Wireless Sensor Networks (WSNs)
on rail tracks. Classify train types and
estimate train lengths.

Deployed robust and inexpensive sensor nodes
with MEMS accelerometers; Local data process-
ing using vibration features (e.g., duration, am-
plitude); Achieved up to 97% classification accu-
racy using Support Vector Machine (SVM).

Measurements were limited to a single
location, reducing generalizability; e.g.
not addressing the impact of varying soil
conditions; Potential capabilities (e.g.,
speed estimation, worn-out wheel detec-
tion) were noted but not demonstrated.
Zhao continued the work.

Zhao et al. (2021)
Continuous Monitor-
ing of Train Parame-
ters Using IoT Sensor
and Edge Computing

Extended the work of Berlin et al. by
developing a system to continuously
monitor train parameters (speed, num-
ber of carriages) using a MEMS-based
accelerometer and vibration data from
the rail.

showcased that solar powered MEMS accelerom-
eters could be used for continuous monitoring
of train operation. Comparison between different
equipment to use in the sensor nodes and their
impact on the power consumption, e.g. Micropro-
cessors, communication chips and sensors; Their
work features a reasoning for the choice of the
sampling rate for an accelerometer mountes to
the rail (min 3.2 kHz)

Their test was only for 24h; they did not
cover running the node on solar all year
long or the impact of pollution on the so-
lar cells; They need special knowledge
about the trains running on the track
and did only collect data at one specific
location.

Table 4: Overview of publications on using MEMS Sensors for railway monitoring

ing the need for retraining.
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