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Accurate prediction of remaining useful life (RUL) is critical to the reliability and safety of lithium-ion batteries. 
However, challenges frequently arise when using the measured data for RUL prediction, such as degradation data 
being significantly influenced by noise and difficulties in estimating uncertainty induced by capacity regeneration. 
To address this issue, a hybrid prediction method to predict battery future capacity and RUL is proposed by 
combining the adaptive variational modal decomposition (AVMD), permutation entropy (PE), long short-term 
memory (LSTM) network and Bayesian neural network (BNN). Specifically, the AVMD algorithm is employed to 
decompose the battery capacity data into the aging trend sequence at low frequencies and the noise and capacity 
regeneration sequences at high frequencies. AVMD adaptively optimizes the number of decomposition stages and 
balancing parameters through kernel estimation for mutual information and the relative energy density gradient as 
the objective function. PE is utilized to adaptively filter the high-frequency and low-frequency sequences while 
eliminating the noise sequence. The prediction models based on LSTM and BNN are then respectively developed 
to forecast the aging trend sequence and capacity regeneration sequence. The proposed hybrid method 
demonstrates broad applicability and minimal prediction error as verified by the application on lithium-ion battery 
dataset. 
Keywords: Lithium-ion batteries, Remaining useful life, Adaptive variational modal decomposition, Permutation 
entropy, Long short-term memory network, Bayesian neural network. 

1. Introduction 
Lithium-ion batteries are widely used as the 
main power supply components in various 
systems such as electronic devices and spacecraft, 
due to their long cycle life, high energy density, 
and no memory effect. However, in practical 
applications, the performance of the battery 
continuously degrades with repeated charging 
and discharging due to the presence of side 
reactions. It is generally believed that when the 
capacity drops below 80% of the initial capacity, 
the device battery will no longer meet the normal 
usage requirements and must be replaced (Ge et 
al., 2021; Li et al., 2019; Song et al., 2023). 

PHM of lithium-ion batteries enables users 
to make maintenance decisions in advance to 
prevent losses caused by unexpected failures. 
Remaining useful life (RUL) prediction is a core 
issue of PHM (Cong et al., 2020; Waag et al., 
2014). To predict the RUL of a battery, it is 
necessary to establish a battery aging model that 
can capture the degradation characteristics of 
lithium-ion batteries and predict the degradation 
characteristics based on measured data as input. 

However, the collected data are often non-
stationary and are greatly affected by noise terms, 
so it is a huge challenge to establish a model that 
can simultaneously capture the long-term 
dependence of capacity and the uncertainty 
caused by fluctuations such as capacity 
regeneration. 

Existing RUL prediction methods are 
mainly divided into model-based approaches and 
data-driven approaches. Model-based methods 
generally use mathematical representations to 
characterize battery capacity degradation (Barré 
et al., 2013), such as electrochemical models 
(Yang et al., 2017) and equivalent circuit models 
(Guha et al., 2017) and are combined with 
filtering techniques (Chang et al., 2017; Lyu et 
al., 2017) to predict the RUL of batteries. This 
approach heavily relies on expert knowledge 
about battery degradation. Moreover, observer 
techniques such as particle filtering are prone to 
particle depletion problems, leading to 
inaccurate RUL predictions (K. Liu et al., 2021). 

Compared with model-based methods, 
data-driven methods rely solely on historical 3510
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degradation data without the need for explicit 
mathematical models to describe the battery 
degradation process, and therefore have been 
widely applied. An increasing number of studies 
apply machine learning techniques to predict the 
RUL of batteries, including neuro-fuzzy 
networks (NF) (Razavi-Far et al., 2009), 
Gaussian process regression (GPR) (Richardson 
et al., 2017), relevance vector machine (RVM) 
(C. Zhang et al., 2017), and backpropagation 
neural networks (BP) (Wu et al., 2016), which 
map feature data to RUL through the constructed 
black-box models. Liu et al. (J. Liu et al., 2012) 
proposed a hybrid model-data-driven method, 
using the data-driven part to predict the future 
measurements of the battery. However, these 
methods directly use the measured capacity data 
for research, and noisy battery aging data often 
reduces the performance of the prediction 
models. The VMD algorithm is an adaptive 
mode decomposition and signal processing 
method, which adaptively decomposes the signal 
into a series of intrinsic mode functions (IMFs) 
(Jiang et al., 2022). The decomposition effect of 
the VMD algorithm is significantly affected by 
the decomposition level and balance coefficient, 
which are usually preset values. In the existing 
literature, research on the joint optimization of 
the decomposition level and balance coefficient 
parameters is still insufficient. 

In conclusion, this paper proposes a hybrid 
method for predicting the future capacity and 
RUL of lithium-ion batteries considering 
capacity regeneration. The adaptive variational 
mode decomposition (AVMD) overcomes the 
problem of the traditional VMD method, where 
the decomposition effect is significantly affected 
by the decomposition level  and the balance 
parameter , achieving more accurate mode 
decomposition. The permutation entropy (PE) 
method automatically excludes noise sequences 
containing less effective information, eliminating 
the influence of noise and improving the 
accuracy of RUL prediction. LSTM models 
capable of capturing the long-term dependence 
of battery capacity decay and BNN models 
capable of capturing the uncertainty caused by 
capacity regeneration are established, 
respectively. Finally, by comparing with 
traditional data-driven methods, the effectiveness 
and superiority of our method are verified. 

2. Methodology 
In this section, a hybrid method for predicting 
the future capacity and RUL of batteries is 
introduced. Traditional methods face issues such 
as significant noise interference, difficulty in 
capturing long-term dependencies in time series, 
and the presence of capacity regeneration 
phenomena in the original data. To address these 
issues, the data-driven method proposed in this 
paper consists of three main parts: the AVMD 
method for accurately decomposing the original 
capacity data set, the LSTM sub-model capable 
of capturing long-term dependencies, and the 
BNN sub-model capable of generating prediction 
result uncertainties. Fig.1 illustrates the 
framework of the proposed method. 

2.1. Fundamentals of the VMD algorithm 
Variational Mode Decomposition (VMD) (Ge et 
al., 2021) is an adaptive method for variational 
mode decomposition and signal processing. It 
overcomes the disadvantages of mode mixing and 
boundary effects present in the Empirical Mode 
Decomposition (EMD) method. The steps of the 
VMD algorithm can be briefly described as 
follows: 
(1) Choose the decomposition modes count  

and balance parameter . Initialize the modes 
. 

(2) Combine the analytic signal with the complex 
exponential term of the estimated central 
frequency to obtain the mixed signal. 
Translate the spectrum of the mixed signal to 
align with the estimated central frequency : 

 

(1) 

where  represents the L2-norm,  is the 
convolution operator, , and  is the Dirac 
distribution. 
(3) Eq.(1) can be transformed into an 

unconstrained equation as in (Ge et al., 2021) 
through quadratic penalty terms and 
Lagrange multipliers. 

2.2. The proposed AVMD algorithm 
The proposed AVMD method uses the kernel 
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Fig. 1. Framework for predicting future capacity and RUL based on the proposed data-driven model.

estimation of mutual information and the gradient 
of relative energy density as constraints, with the 
decomposition series  and the balance parameter 

 as optimization targets. It achieves parameter 
optimization through the Multi-Objective 
Grasshopper Optimization Algorithm (MOGOA) 
(Mirjalili et al., 2018). The kernel estimation of 
mutual information (Kumar et al., 2021) is used to 
determine the decomposition series . The 
selection of the balance parameter has always 
been a challenge in VMD, and the relative energy 
density (Jiang et al., 2019) can characterize the 
bandwidth of the decomposed modes.  

The calculation process of kernel estimation 
of mutual information is outlined in (Kumar et al., 
2021). The KEMI is: 

 (2) 

To prevent mode mixing, the mutual 
information among modes should be reduced, and 
to avert information loss during decomposition, 
the sum of mutual information between all modes 
and the original signal need to be maximized.
Consequently, a function is proposed to 
characterize the ratio of the sum of mutual 
information among modes to the sum of mutual 

information between the original signal and the 
modes. This function can be described as: 

 
(3) 

The balance parameter  is used to balance 
the relationship between data fidelity and the 
bandwidth constraint of the components. A broad 
bandwidth may incorporate considerable noise 
into the modes, whereas a narrow bandwidth may 
exclude some valuable information from the 
modes. There is limited research on the selection 
of the balance parameter, making it difficult to 
specify an exact balance parameter coefficient 
before VMD. Indicators based on kurtosis and 
envelope are widely used for parameter 
optimization in the mode decomposition of 
mechanical vibration signals but are not suitable 
for the VMD of battery degradation data. 
Reference (Jiang et al., 2019) defines an indicator 
that accurately assesses the bandwidth 
characteristics, the energy density (ED), which 
reflects the frequency domain coverage of the 
corresponding mode, and the relative energy 
density (RED), indicating the proportional 
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bandwidth of the decomposed mode. As the RED 
increases, the wider the bandwidth of the 
decomposed mode; the bandwidth is co-regulated 
by the quantity of decomposition modes and the 
balance parameter. The RED is: 

 (4) 

 represents the ED of each mode 
: 

 (5) 

Essentially, a larger RED corresponds to a 
broader bandwidth of . As 
shown in Fig.2, both the decomposition mode 
number and the balance parameter jointly affect 
the RED. When the balance parameter is small, a 
slight change in the balance parameter can cause 
significant fluctuations in the mode bandwidth, 
and an excessively large bandwidth may cause 
some components to encompass other 
components. We select the optimal balance 
parameter when the gradient of the RED is close 
to 0, at which point the RED is essentially 
unaffected by the balance parameter. This method 
ensures that no component encompasses another.  
When the gradient of RED is approximately equal 
to 0, in the flat region shown in Fig.2, indicating 
the optimal balance parameter coefficient: 

 

Fig.2 The relationship betwsseen the RED and the 
number of modes and balance parameters. 

 
(6) 

  represents the gradient of the RED, 
where  is the number of decomposition modes, 
and  is the balance parameter.  

PE is a measure of the natural complexity of 
time series introduced by Bandt in (Bandt & 
Pompe, 2002). We normalize PE values to the 
range [0,1] using Eq.(7). 

 (7) 

where  is the original PE value,  is the time 
series length, and  is the embedding dimension. 
PE reflects complexity: lower values (PE < 0.4) 
indicate regularity, while higher values (PE > 0.4) 
suggest randomness and noise. According to the 
literature (Jiang et al., 2019), the threshold for PE 
is suitably set at 0.4. When the PE value exceeds 
0.4, it is considered that the decomposed 
component contains only a small amount of 
effective information or is pure noise. In this 
study, the PE threshold is set to 0.4. 

2.4. A Long short-term memory model 
LSTM, a type of Recurrent Neural Network 
(RNN), mitigates the exploding and vanishing 
gradients issues in time series sequences and is 
effective for long-term dependency predictions 
(Wang et al., 2023; Y. Zhang et al., 2018). The 
advantage of the LSTM framework lies in its 
ability to store or update key information through 
the manipulation of introduced gates. In the fig.3, 
a typical LSTM-based RNN model consists of 
three gates. The forget gate allows for the deletion 
of information from the cell state  or the writing 
of information into the cell state , the input gate 
determines whether the model can receive new 
state information, and the output gate decides 
which values of the cell state to output. 

 

Fig.3 Structure of LSTM-based RNN model. 
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The decay values of capacity across different 
cycles are highly correlated. Therefore, LSTM 
will be used to capture the degradation trend 
sequences after AVMD. 

2.5. Bayesian neural network model 
Bayesian Neural Networks (BNNs) differ from 
conventional neural networks primarily in that 
their weight parameters are random variables 
following certain probability distributions, rather 
than fixed values.  

Existing BNN models generally employ 
variational inference for training. A set of 
parameters controls the distribution  to 
approximate the true posterior . Typically, 
a Gaussian distribution  is used for this 
approxismation. Each weight  is sampled from 
a normal distribution . The Kullback-
Leibler (KL) divergence is used to measure the 
distance between two distributions: 

 (8) 

By further derivation, we obtain: 

 (9) 

 represents the distribution of the weight 
parameters;  represents the likelihood of 
the observed data given the weight parameters;  

represents the prior of the weights. The 
inference problem of  is transformed into 
maximizing the Evidence Lower Bound (ELBO) 
problem: 

 
(10) 

Given a training dataset , the Monte 
Carlo rule can be applied as per Eq.(10) to obtain: 

 

(11) 

Using Eq.(11) as the loss function, the 
network structure is shown in Fig.4. 

 

Fig.4 Structure of BNN model. 

3. Case application and discussion 
3.1. Case data 
In this paper, the effectiveness and superiority of 
the proposed method is verified using 
experimental data from 20 commercial 
LCO/graphite batteries of various models from a 
lithium-ion battery manufacturer. These 20 
batteries were cycled individually under a 
constant temperature condition of 25 . Fig.5 
shows the capacity degradation trajectory. Fig.6 
takes batteries 14# and 15# as examples, there 
are obvious capacity regeneration phenomena 
during the degradation process.  

 

Fig.5 Capacity degradations versus cycle number. 

 

Fig.6 Capacity regenerations versus cycle number. 
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3.2. Results and discussion 
The presence of PE values less than 0.4 for the 
decomposed components of the sample other 
than the degenerate sequences is found in only 5 
samples. Fig.7 presents the final RUL prediction 
results based on the single LSTM model, single 
GPR model (For better graphical representation, 
the single GPR model discards the confidence 
ranges) and the hybrid method proposed in this 
paper. The lifetime of all samples is defined as 
the point at which they retain 80% of their initial 
capacity. Using half of the entire lifecycle data 
for observation, it is found that predictions based 
solely on LSTM or GPR are inferior to those 
based on the proposed method. Furthermore, 
apart from battery 12#, the prediction outcomes 
for the remaining batteries are notably 
satisfactory. To measure the accuracy of the 
proposed method, three evaluation metrics are 
introduced: Mean Absolute Error (MAE), Root 
Mean Square Error (RMSE), and Mean Absolute 
Percentage Error (MAPE). Their definitions are 
as follows: 

 
(12) 

 
(13) 

 (14) 

here,  and  represent the predicted and actual 
capacities at the -th cycle, respectively;  
denotes the total number of cycles, and  
indicates the starting cycle for prediction. Table 
2 presents the statistical results of RUL 
prediction errors for the 5 test samples. Battery 
1# has the highest prediction accuracy, while 
Battery 12# shows a more noticeable deviation 
in prediction. In Fig.7, the prediction uncertainty 
boundaries for all samples encompass the true 
predicted values. As the prediction step increases, 
the 95% confidence range will distribute in a 
wide region, indicating an increase in prediction 
uncertainty. This trend is attributed to the 
heightened uncertainty associated with long-term 
predictions. 

Table 2 presents the prediction error results 
of the comparative experiments, where the 
proposed method significantly outperforms the 
standalone LSTM model. The RUL uncertainty 
bounds in Table 2 are defined by the confidence 
intervals associated with the battery EOL cycle. 
Among the multiple test samples, Battery #1 
exhibits the widest confidence range. However, 
this value remains within an 8% range, 
suggesting that the model demonstrates robust 
extrapolation capabilities. Table 3 provides the 
final RUL prediction results for the 5 test 
samples based on the method proposed in this 
paper. The predicted RUL is relatively 
conservative compared to the actual RUL. The 
predicted RUL for batteries other than 12# is 
quite accurate; the RUL uncertainty bounds for 
batteries other than 12# effectively cover the 
actual RUL values. 
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Fig.7 Predicted results of RUL for the proposed hybrid method and other two single methods. 

Table 1. Prediction error for the five batteries. 

Battery No. 
LSTM GPR The proposed method 

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 
1# 
4# 
9# 

12# 
16# 

72.25 
48.84 
68.61 
111.48 
66.65 

42.66 
28.47 
40.80 
65.11 
39.58 

2.68 
1.40 
2.26 
4.57 
2.15 

42.22 
40.74 
45.42 
55.20 
40.94 

24.46 
23.60 
28.63 
34.15 
25.23 

1.56 
1.17 
1.49 
2.30 
1.30 

11.08 
18.55 
21.34 
64.09 
19.33 

6.44 
10.75 
12.63 
58.01 
11.40 

0.41 
0.53 
0.70 
2.81 
0.62 

Table 2. Performance of RUL predictions. 

Battery 
No. 

Actual 
EOL 

Actual 
RUL 

Predicted 
RUL 

RUL 
uncertainty 

1# 
4# 
9# 

12# 
16# 

501 
594 
681 
801 
802 

251 
297 
341 
401 
401 

236 
291 
338 
364 
394 

[220,259] 
[294,313] 
[328,356] 
[352,377] 
[388,402] 

While acknowledging the effectiveness of 
the proposed method, it is important to note that 
AVMD represents a computationally intensive 
step. Specifically, the use of a MOGOA to 
iteratively compute kernel estimates for mutual 
information among decomposed modes and the 
gradients of relative energy densities 
significantly contributes to its time-consuming 
nature. This computational burden is primarily 
due to the need for adaptive optimization of 
decomposition parameters, such as the number 
of modes and bandwidth, which enhances the 
accuracy but increases complexity. 

In contrast, the LSTM and BNN models, 
which are based on the decomposed data, exhibit 
relatively low computational complexity. These 
models are implemented using MATLAB 
toolboxes or modifications thereof, resulting in 
faster processing times. The LSTM model 
leverages its ability to handle long-term 
dependencies in time series data efficiently, 
making it suitable for rapid prediction tasks. 
Similarly, BNNs provide robustness and 
uncertainty quantification without significantly 
increasing computational demands. 

Consequently, the proposed methodology 
remains versatile and does not significantly 
increase the overall computational burden. By 
integrating AVMD as a pre-processing stage for 
data decomposition, the subsequent modeling 

based on decomposed data and the integration of 
results can meet the requirements for timeliness.  

4. Conclusion 
In response to the significant impact of noise and 
capacity regeneration on the RUL prediction of 
lithium-ion batteries, this paper proposes an 
innovative data-driven method. The main 
advantages of this method are as follows: 
1) An AVMD algorithm is proposed, using the 

kernel estimation of mutual information and 
the gradient of relative energy density as 
constraints. This overcomes the issue of the 
traditional VMD method, where the 
decomposition effect is significantly 
influenced by the decomposition level and the 
balance parameter.  

2) The PE method is used to filter out the aging 
trend sequences and capacity regeneration 
sequences, while removing the noise 
sequences that contain less effective 
information.  

3) An LSTM model captures long-term 
dependencies in battery degradation, and 
BNNs express uncertainties due to capacity 
regeneration. The proposed method has 
significantly outperformed the standalone 
LSTM model, with the MAE, RMSE, and 
MAPE reduced by 63%, 54%, and 61%, 
respectively, demonstrating a clear superiority. 

References 
Bandt, C., & Pompe, B. (2002). Permutation Entropy: 

A Natural Complexity Measure for Time Series. 
Physical Review Letters, 88(17).  

Barré, A., Deguilhem, B., Grolleau, S., Gérard, M., 
Suard, F., & Riu, D. (2013). A review on 
lithium-ion battery ageing mechanisms and 



3517Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

estimations for automotive applications. In 
Journal of Power Sources (Vol. 241).  

Cong, X., Zhang, C., Jiang, J., Zhang, W., & Jiang, Y. 
(2020). A Hybrid Method for the Prediction of 
the Remaining Useful Life of Lithium-Ion 
Batteries with Accelerated Capacity 
Degradation. IEEE Transactions on Vehicular 
Technology, 69(11).  

Ge, M. F., Liu, Y., Jiang, X., & Liu, J. (2021). A 
review on state of health estimations and 
remaining useful life prognostics of lithium-ion 
batteries. Measurement: Journal of the 
International Measurement Confederation, 174.  

Guha, A., Patra, A., & Vaisakh, K. V. (2017). 
Remaining useful life estimation of lithium-ion 
batteries based on the internal resistance growth 
model. 2017 Indian Control Conference, ICC 
2017 - Proceedings.  

Jiang, X., Song, Q., Wang, H., Du, G., Guo, J., Shen, 
C., & Zhu, Z. (2022). Central frequency mode 
decomposition and its applications to the fault 
diagnosis of rotating machines. Mechanism and 
Machine Theory, 174.  

Jiang, X., Wang, J., Shi, J., Shen, C., Huang, W., & 
Zhu, Z. (2019). A coarse-to-fine decomposing 
strategy of VMD for extraction of weak 
repetitive transients in fault diagnosis of 
rotating machines. Mechanical Systems and 
Signal Processing, 116.  

Kumar, A., Zhou, Y., & Xiang, J. (2021). 
Optimization of VMD using kernel-based 
mutual information for the extraction of weak 
features to detect bearing defects. Measurement: 
Journal of the International Measurement 
Confederation, 168.  

Liu, J., Wang, W., Ma, F., Yang, Y. B., & Yang, C. S. 
(2012). A data-model-fusion prognostic 
framework for dynamic system state forecasting. 
Engineering Applications of Artificial 
Intelligence, 25(4).  

Liu, K., Shang, Y., Ouyang, Q., & Widanage, W. D. 
(2021). A Data-Driven Approach with 
Uncertainty Quantification for Predicting 
Future Capacities and Remaining Useful Life of 
Lithium-ion Battery. IEEE Transactions on 
Industrial Electronics, 68(4).  

Li, Y., Liu, K., Foley, A. M., Zülke, A., Berecibar, M., 
Nanini-Maury, E., Van Mierlo, J., & Hoster, H. 
E. (2019). Data-driven health estimation and 
lifetime prediction of lithium-ion batteries: A 

review. In Renewable and Sustainable Energy 
Reviews (Vol. 113).  

Mirjalili, S. Z., Mirjalili, S., Saremi, S., Faris, H., & 
Aljarah, I. (2018). Grasshopper optimization 
algorithm for multi-objective optimization 
problems. Applied Intelligence, 48(4).  

Razavi-Far, R., Davilu, H., Palade, V., & Lucas, C. 
(2009). Model-based fault detection and 
isolation of a steam generator using neuro-
fuzzy networks. Neurocomputing, 72(13–15).  

Richardson, R. R., Osborne, M. A., & Howey, D. A. 
(2017). Gaussian process regression for 
forecasting battery state of health. Journal of 
Power Sources, 357. h 

Song, K., Hu, D., Tong, Y., & Yue, X. (2023). 
Remaining life prediction of lithium-ion 
batteries based on health management: A 
review. In Journal of Energy Storage (Vol. 57).  

Waag, W., Fleischer, C., & Sauer, D. U. (2014). 
Critical review of the methods for monitoring 
of lithium-ion batteries in electric and hybrid 
vehicles. In Journal of Power Sources (Vol. 
258).  

Wang, Y., Zhu, J., Cao, L., Gopaluni, B., & Cao, Y. 
(2023). Long Short-Term Memory Network 
with Transfer Learning for Lithium-ion Battery 
Capacity Fade and Cycle Life Prediction. 
Applied Energy, 350.  

Wu, J., Zhang, C., & Chen, Z. (2016). An online 
method for lithium-ion battery remaining useful 
life estimation using importance sampling and 
neural networks. Applied Energy, 173.  

Yang, X. G., Leng, Y., Zhang, G., Ge, S., & Wang, C. 
Y. (2017). Modeling of lithium plating induced 
aging of lithium-ion batteries: Transition from 
linear to nonlinear aging. Journal of Power 
Sources, 360.  

Zhang, C., He, Y., Yuan, L., & Xiang, S. (2017). 
Capacity Prognostics of Lithium-Ion Batteries 
using EMD Denoising and Multiple Kernel 
RVM. IEEE Access, 5, 12061–12070.  

Zhang, Y., Xiong, R., He, H., & Pecht, M. G. (2018). 
Long short-term memory recurrent neural 
network for remaining useful life prediction of 
lithium-ion batteries. IEEE Transactions on 
Vehicular Technology, 67(7).  

  


