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Abstracts: Rolling bearing, a widely used core component in industry, will bring a serious threat to the safety of
the machine and staff when it fails. At present, the time-varying operating conditions and catastrophic forgetting
have brought great challenges to bearing fault diagnosis. One of the reasons is that good performance can only be
maintained if the model is kept under the same conditions as the offline training phase. If the model is directly
trained by using the data acquired from new operating condition, the model will suffer from catastrophic
forgetting, resulting in poor performance of previous operating condition. In order to solve the above problems, a
bearing fault diagnosis method based on lifelong learning is proposed in this paper, which is implemented based
on Residual Network with Convolutional Block Attention Module(Res-CBAM) and Elastic Weight Consolidation
(EWC). As the basic fault diagnosis model, Res-CBAM can adaptively extract fault features. The introduction of
elastic weight consolidation can make the model retain the feature extraction ability of the past condition when
learning the fault features of the new condition, so as to solve the catastrophic forgetting problem. The
experimental results show that the proposed method has good performance in fault diagnosis under cross
conditions.
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1. Introduction

Rolling bearing is the core component of rotating
machinery and has widely usage in industry (Cui
L.L. et al. 2019). However, the bearing will be
damaged easily due to the influence of complex
working condition (Zhang W.L. et al. 2020).
Once the rolling bearing fails, a serious threat to
the safety of the machine and staff will occur.
Therefore, it is of great significance and
necessary to detect faults in time (Feng, J. 2021,
Xing, S.B. 2022, Shao, H.D. 2021).

Due to the advantages of adaptive feature
extraction and end-to-end learning, deep learning
is widely used in the field of rolling bearing fault
diagnosis. The most of proposed fault diagnosis

methods based on deep learning (Kamat 2021,
Xu, Y.2021, Peng, B. 2022) are trained under
specific  conditions, which means their
generalization performance is insufficient,
resulting in good performance can only be
maintained if the model is kept under the same
conditions as the offline training phase.
Nevertheless, in practical applications, the
continuous operations of mechanical equipment
generate industrial streaming data, which consist
of different operating conditions. In addition, if
the model is directly trained by using the data
acquired from new operating condition, the
model will suffer from catastrophic forgetting,
resulting in poor performance of previous
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operating condition. This brings great challenges
to the application of fault diagnosis models.
Therefore, it is necessary to find an incremental
learning method to address this issue.

In order to solve the catastrophic forgetting,
most studies resort to data replay, which
moderately allows previous data rehearsal to
consolidate old knowledge during the model
updating. Russell (2024) proposed an adaptive
online condition monitoring framework for
machinery fault diagnosis, where the mixed-up
enhanced data replay is introduced to mitigate
the forgetting of old task knowledge. Chen (2024)
introduced a generative rehearsal strategy to
assist model updating when encountering online
learning issues. Compared with direct data
rehearsal, the  generative-based  strategy
effectively addresses the class imbalance that
occurred in the fault diagnosis task. The methods
mentioned above are helpful for reducing
catastrophic forgetting. However, the strategy of
data replay requires additional space to store the
data acquired from past operating condition.
With the increase of operating conditions, the
storing space occupied by storing data is
unacceptable.

To solve the above problems, a lifelong learning
method based on
block attention module(Res-
CBAM) and elastic weight consolidation is
proposed in this paper. The Res-CBAM model is
used as a usual fault diagnosis model. And the
elastic weight consolidation is used as the model
updating mechanism, which makes the model

residual network with

convolutional

not forget the knowledge of past conditions
when learning the fault diagnosis knowledge of
new conditions.

2. Proposed Method

As is shown in Fig. 1,The bearing fault diagnosis
based on lifelong learning under cross operating
conditions is proposed. The method is consist of
convolutional block attention module(Res-
CBAM) and elastic weight consolidation. The
Res-CBAM model is used as a usual fault

diagnosis model. When operating
conditions come, elastic weight consolidation is
used in the model updating. Compared with
directly training, the usage of elastic weight
consolidation makes the model not forget the
knowledge of past conditions when learning the

fault diagnosis knowledge of new conditions.
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Fig. 1. Bearing fault diagnosis based on lifelong
learning under cross operating conditions

2.1.Res-CBAM

Residual network(ResNet) (He, K., 2016) is a
kind of artificial neural network widely utilized
in the field of feature learning, especially in the
field of image recognition and object detection.
However, vibration data contains a lot of
information that is not related to the fault. If only
the residual network is used, bearing fault
features cannot be accurately extracted.
Therefore, convolutional  block attention
module(CBAM) is introduced into the ResNet to
improve the ability of fault feature extraction.
The architecture of Res-CBAM model is shown
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Fig. 2. The architecture of Res-CBAM model
The proposed model consists of two sub-network,
fault feature extraction sub-network and fault
mode recognition sub-network. The fault feature
extraction sub-network is built by stacking Res-
CBAM block. Each CBAM block consist of
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backbone and residual connection. The backbone
is used to extract fault feature and the residual
connection is used to reduce gradient
explosion/vanish. The fault mode recognition
sub-network consists of global average pooling
and fully connection, which is used to establish
mapping relationship between fault feature and
fault mode.

In the backbone of Res-CBAM block, input
vibration sequence data is processed by
convolution operation to acquire shallow feature
map. In one channel of feature map, there may
be some bearing fault features such as periodic
shocks or impulses. However, it is noted that the
distribution of these features is discrete along the
time axis and thus they merely can be found in
some local locations of the channel of some of
the feature map. Therefore, channel attention and
spatial are introduced. These two attention
mechanisms enable model to effectively learn
“which” and “where” to attend in the channel
and spatial (time axis) dimensions, facilitating
the information flow within the network and
enhancing the ability of fault feature extraction
of the network (Wang, B., 2020). Fig. 2 shows
details of these two attention mechanism.

The channel-wise attention is built by modeling

the interrelationships  between  channels.
Therefore, the global average pooling (GAP) and
the global max pooling (GMP) are firstly used to
aggregate the global information of each channel,
generating two different channel descriptors.
Then these two descriptors are forwarded to a
multi-layer perceptron (MLP) with one hidden
layer to capture the interchannel relationships
and estimate the informativeness of every
channel, respectively. After that, the outputs of
two MLPs are merged by using element-wise
summation and the channel attention weight can
be got after sigmoid function. The calculation of
channel attention weight can be described as:
W yamer = Sigmoid (MLP(GMP (input)) ®
MLP(GAP(input))) M
Finally, the channel-refined feature maps can be
got by conducting channel-wise multiplication
between the shallow feature map and the
channel-wise attention weights.
The temporal attention captures informative

locations by encoding the  contextual
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relationships of each channel. Two Depthwise
dilated convolutions layers are first employed to
convolve the channel-refined feature maps,
independently mapping the context of each
channel. Then the hard sigmoid function is
adopted to implement the nonlinear activation,
resulting in the spatial attention weights. Finally,
by performing element-wise multiplication
between channel-refined feature maps and
spatial weight, the refined spatial feature maps
are got. The spatial weight can be calculated by:

WWZW = Sigmoid (DConv,(DConv,(input))) (2)

2.2. Elastic Weight Consolidation

In general, only some of the parameters in the
neural network play a positive role in the
prediction task but not all of them. Traditional
training methods of networks change the
important parameters which are important for
previously task, resulting in catastrophic
forgetting. In order to solve this problem, it is
important to find a new training method to limit
the update of these important parameters, such as
elastic weight consolidation. Elastic weight
consolidation (EWC) is a method to address the
issue of neural networks forgetting previously
learned knowledge when learning new tasks. The

principle explanation of it is shown in Fig. 3.

Parameter space of old task ——» EWC

ParameterSpace of new task

i

Fig. 3. The principle explanation of EWC

Traditional training
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As is shown in Fig. 3, the blue area indicates the
parameter space where make the model has good
performance on previously task and the orange
area indicates the parameter space where make the
model has good performance on new task. EWC
makes the model of the old task is adjusted
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towards the intersection space of old and new
knowledge by introducing the penalty term, rather
than towards the space of new knowledge only
like traditional training. The loss function for
training the new task with EWC is expressed as:

Lnew (6) Lnew (6) + Lald (3)

Where L

.« 1s the penalty term mentioned

before, and L (6) is the loss function of new

task. L

. can be calculated by:

A .
Lu=52F0-0., 4

Where 6, represents the network parameters of

the new task, 9;,1. represents the optimal

network parameters of the old task. F;

represents the diagonal elements of the Fisher
information matrix, which evaluates the
importance of network parameters in the old
task. A is the regularization parameter to
balance the importance of losses between new
task and old task. F, can be calculated by:

oL(d,0)
’ |D| ZdeD 92 (5)

3. Case Study

3.1. Data Description

The bearing fault datasets from the chair of
design and drive technology, Paderborn
University (Lessmeier C., 2016) are employed to
verify the effectiveness of the proposed method.
As shown in Fig. 4, the bearing test rig consists
of five parts: 1) electric motor, 2) torque-
measurement shaft, 3) rolling bearing module, 4)
test flywheel, and 5) load motor. The vibration
signals are acquired with a sampling rate of 64
kHz from acceleration sensors mounted on
SKF6023 bearings. The operating parameters of
bearing is listed as Tab. 1.

As is shown in Tab. 1, the bearing fault dataset
includes three operating conditions. The detailed
description of the operating conditions is as
follows.

Operating condition 1(C1): Rotational speed 900
rpm, Load Torque 0.7 Nm, Radial force 1000 N.
Operating condition 2(C2): Rotational speed
1500 rpm, Load Torque 0.7 Nm, Radial force
1000 N.

Operating condition 3(C3):Rotational speed
1500 rpm, Load Torque 0.7 Nm, Radial force
400 N.

Torque
electric measurement  rolling load
motor shaft bearing flywheel motor

Fig. 4. Bearing test rig
Tab. 1. Operating parameters of bearing.

N  Rotation Load Radial Categ  Labe-  Sam-
o  -al speed Torque force —ories Is les
. pm) Nm) (N P

C N/IR/

1 900 0.7 1000 OR 0/1/2 150
C N/IR/

5 1500 0.7 1000 OR 0/1/2 150
C N/IR/

3 1500 0.7 400 OR 0/1/2 150

3.2. Experimental Verification
Three experiments are done to verify the

performance of the proposed method. The first
experiment is fault diagnosis under signal
condition. The second experiment is fault
diagnosis under cross condition without lifelong
learning. The third experiment is fault diagnosis
under cross condition with lifelong learning.
3.2.1. Fault Diagnosis Under Signal Condition

In this experiment, three Res-CBAM models
proposed in Section 2.1 is constructed as the
baseline fault diagnosis model. The data from
different conditions is used to train the model
separately, which means three baseline fault
diagnosis models of different condition are
acquired. These three models are denoted as
Modell, Model2 and Model3. The training and
test datasets are split in the ratio 8:2. Cross
entropy is used as the loss function of the
network and Adam optimizer with a mini-batch
size of 15 is used to update its weights and
biases. The accuracy of the different condition is

shown in Tab. 2.
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Tab. 2. Accuracy of the diagnosis under signal Tab. 3. Diagnosis accuracy of Modell without lifelong
condition learning
Training dataset Task Sequence
Cl C2 C3 Cl C2 C3
Accu Cl 1.000 0.607 0.526 Accu Cl 1.000 0.567 0.427
racy C2 0.707 0.993 0.887 racy C2 - 0.993 0.907
C3 0.633 0.813 1.000 C3 - - 1.000

As is shown in Table 2. all the models have good
performance on the test dataset corresponding to
the conditions of their training dataset, which
means the proposed model can -effectively
extract fault features of different fault modes.
However, the performance on other condition is
unsatisfactory, which causes by the different
distribution of different condition. Specially, the
performance on condition 3 of Model2 and the
performance on condition 2 of Model3 better
than them on condition 1. The main reason for
this phenomenon is that the difference between
conditions 2 and condition 3 is the radial forces,
and the difference between condition 1 and
others is rotational speed. The rotational speed
has greater impression than the radial force on
the bearing fault features, because the change of
rotational speed directly leads to the change of
fault characteristic frequency of vibration data.
but the radial force does not.

3.2.2. Fault Diagnosis Under Cross Condition
Without Lifelong Learning

In this experiment, the baseline models acquired
from the first experiment are used for fault
diagnosis under cross condition. These models
are trained through the training dataset of other
condition in order. After each training, the
diagnosis accuracy is evaluated by the test
dataset of current condition and past condition.
Cross entropy and Adam are used as loss
function and optimizer of the training process,
respectively. The diagnosis accuracy of Modell
is listed as Tab. 3.

As is shown in Table 3, the model has good
performance on current condition. However,
performance on past condition is unsatisfactory,
which means the model suffers from serious
catastrophic forgetting. Obviously, such model
performance cannot be applied in real industrial
scenarios.

3.2.3. Fault Diagnosis Under Cross Condition
With Lifelong Learning
In this experiment, the baseline models acquired
from the first experiment are used for fault
diagnosis under cross condition. Different from
section 3.2.2, these models are trained through
the training dataset of other condition with EWC
in order and the diagnosis accuracy is evaluated
in all condition.As is shown in Table 4, the
model has good performance on both condition 1
and condition 2 after training on condition 2.
After training on condition 3, although the
accuracy of condition 1 drops to 0.8, it still
higher than the accuracy without lifelong
learning, which means EWC can effectively
reduce catastrophic forgetting.

Tab. 4. Diagnosis accuracy of Modellwith lifelong

learning
Task Sequence
Cl C2 C3
Aceu Cl 1.000 0.927 0.800
racy C2 0.707 0.927 0.907
C3 0.633 0.799 0.980

4. Conclusion

A lifelong learning method based on residual
network with convolutional block attention
module(Res-CBAM)  and  elastic  weight
consolidation is proposed in this paper. It is shows
by the experiments that the proposed method has
good performance in bearing fault diagnosis under
cross operating conditions. The introduction of
EWC obviously reduces catastrophic forgetting.
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Although the proposed method achieves a good
fault diagnosis accuracy, the case of increasing
fault types does not be considered, which becomes
the future research direction.
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