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Accurately degradation analysis and prediction for hydraulic piston pump is crucial to ensure hydraulic system 

reliability, reduce unexpected downtime, and optimize maintenance schedules. The hydraulic piston pump’s 

degradation from wear is typical gradual failure mode. Traditional methods for degradation modelling often rely on 

physics of failure models or machine learning models. However, physics of failure models may not fully capture 

the degradation process of the hydraulic piston pump with multiple randomness and uncertainties. Machine learning 

models generally needs massive degradation data to learn black-box models to reach high accuracy prediction. In 

order to incorporate the benefits of both methods, a novel physics-informed recurrent Gaussian process model is 

developed to describe degradation process of hydraulic piston pump and predict remaining useful life. Firstly, the 

wear process model of three friction pairs including swash plate/slipper, valve plate/cylinder block, and 

piston/cylinder bore for a type of hydraulic piston pump is investigated. Secondly, the degradation process of 

hydraulic piston pump is constructed by physics informed recurrent Gaussian process (PI-RGP) model. Comparing 

with Gaussian process model, recurrent Gaussian process model can reflect time accumulative effect. The mean 

function of the model is generated by deriving equations from physics of failure model to guide the forecasting 

process, so that the degradation model is more in line with the actual wear process. In addition, the model can also 

initiate small data training, and then update and extrapolation the model with new measurements. Finally, the 

experimental results indicate that the proposed PI-RGP model has foresight of the degradation process and can 

further improve the degradation prediction accuracy of hydraulic piston pump. 

 

Keywords: Recurrent Gaussian process, Physics-informed, Hydraulic piston pump, Degradation. 

 
 

1. Introduction 
As the core element of the hydraulic system, the 

pump provides essential power, and its degradation 

directly influences the system's performance and 

efficiency. Moreover, the reliability and stability of 

the overall equipment operation are closely tied to 

the condition of the hydraulic system. Therefore, 

accurately assessing and prediction degradation of 

the hydraulic pump is of significant practical 

importance for developing effective maintenance 

strategies and ensuring the smooth operation of 

aircraft systems (  , 2024; Chen et al. 2024).  

Recent studies on degradation process of hydraulic 

piston pump can be classified into two methods: 

physics of failure (PoF) methods and data-driven 

method (Yang et al., 2022) As for PoF methods, we 

can find that recent studies conduct the failure 

mechanism analysis for hydraulic pump by 

numerical models, and they are validated by typical 

commercial software (Wang et al., 2021; Novak et 

al. 2023). However, due to harsh working 

conditions and coupling failure mechanisms of 

aviation hydraulic pumps, the lubrication films in 

three friction pairs are also in the changeable state. 

Too many assumptions are also made, which might 

not be reasonable in real case. Besides, it will lead 

to too much computation burden no matter 

numerical models or commercial software. They 

cannot obtain immediate response to monitor real 

degradation state under dynamic working 

operations (Wang et al., 2016)  

Data driven method has been widely used to 

describe the degradation process for the 

mechanical or hydraulic components like hydraulic 

pump. Ma et al. (2019) proposed an engineering-

driven performance degradation analysis method 

based on inverse Gaussian process model 

considering the nature of mechanical wear of 
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hydraulic piston pumps. Wang et al. (2016) used 

Wiener process to predict the remaining useful life 

of the pump, and the unknown parameter was 

estimated by maximum likelihood estimation and 

expectation maximization algorithm. Yu et al. 

(2021) constructed conditional factor variational 

auto-encoder model to assess performance 

degradation of hydraulic pumps. Li et al. (2020) 

constructed the abrasive debris generation model 

with rough sliding under mixed lubrication, and a 

partition-integration remaining useful life 

prediction framework was also proposed. From the 

discussions above, we can find massive 

degradation data should be used to obtain high 

accuracy degradation or remaining useful life 

prediction for data-driven method. However, it is 

difficult to obtain enough degradation data for 

high-reliability and long-life hydraulic component 

like hydraulic pump. In addition, there are lacks of 

interpretability for pure data-driven method, which 

leads to low model robustness and generalization.  

Physics-informed data driven method takes the 

advantages of PoF method and data-driven method, 

which has been used in degradation analysis for 

hydraulic or mechanical component (Yu et al., 

2023; Xu et al., 2024). The challenge of this 

method is to establish an accurate physical model 

with an appropriate number of parameters and 

select the corresponding data-driven method to 

avoid excessive computation and overfitting while 

ensuring accuracy. Physics-informed data driven 

models include physics-informed neural network 

models (PINN) (Raissi et al., 2019), physics-

informed long short-term memory (LSTM) (Liu et 

al., 2023), physics-informed deep learning (Shen et 

al., 2021) and physics-informed Gaussian process 

(PIGP), etc. Among of them, PIGP can not only 

capture the degradation process of component, but 

also handle the uncertainties (Shu et al., 2024; 

Zhang et al. 2022). However, at present, there are 

many theoretical foundations for Gaussian process 

based on physical information fusion, but most of 

them use classical degenerative models (such as 

Arrhenius models or low-order polynomial 

empirical functions) as mean functions to solve 

practical problems, and fit them in a data-driven 

way. To the best of authors’ knowledge, few 

studies focus on the real degradation process while 

considering the dependency between current and 

formal degradation state. In summary, the main 

contributions of this paper rest on constructing a 

physics-informed recurrent Gaussian process 

model for hydraulic piston pump degradation 

analysis combing the wear degradation analysis.  

The rest of paper is organized as follows. Section 2 

presents the wear degradation process of hydraulic 

piston pump. Section 3 constructs the physics-

informed recurrent Gaussian process model for 

degradation analysis. Section 4 uses a real case to 

verify the model we proposed. Section 5 concludes 

the whole paper.  

2. Wear Degradation Process for Hydraulic 
Piston Pump  

The typical structure of a hydraulic piston pump is 

illustrated in Fig. 1. When driven by the engine, the 

pump operates with the valve plate and swash plate 

remaining stationary while the cylinder block 

rotates. Inside the cylinder block, pistons 

reciprocate within their respective chambers. 

During operation, as a piston chamber aligns with 

the suction port, the piston retracts from the 

cylinder block's bottom, drawing low-pressure 

fluid into the chamber via the suction slot. 

Conversely, when the piston chamber aligns with 

the discharge port, the piston advances toward the 

bottom of the cylinder block, expelling high-

pressure fluid through the discharge slot. This 

cyclical motion occurs for each piston as the 

cylinder block completes a single rotation, 

facilitating the conversion of mechanical energy 

into hydraulic energy. 

 
Fig. 1. The typical structure of hydraulic piston pump. 

Previous research has identified three primary 

failure mechanisms in hydraulic piston pumps, 

with the most significant being wear in the three 

friction pairs: swash plate/slipper, valve 

plate/cylinder block, and piston/cylinder. 
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Progressive wear in these areas leads to pump 

failure, primarily due to internal leakage.  

The wear process is influenced by multiple factors, 

including friction speed, applied pressure, surface 

roughness, material characteristics, wear 

mechanisms, lubrication conditions, surface 

coatings, and the design of the friction pair. It is 

inherently a function of the tribological system. 

Wear progresses in distinct phases, with a 

predictable pattern emerging during the stable wear 

stage following initial material degradation. 

Generally, the basic process of wear can be divided 

into three stages: running stage, stable wear stage 

and failure stage, as shown in Fig. 2 (Liu et al.,2022, 

Ma et al., 2019).  

 

Fig. 2. Hydraulic pump wear process. 

Under a specific stress load with constant pressure 

and angular speed of pump, the amount of 

degradation affected by the introduction of 

different stages can be expressed as (Ma et al., 

2019): 

 
1 2

1
2 3

2 3

exp
g gc P nW c P c n

c P c n
  (1) 

where W  is the amount of wear, P  is the pressure, 

n  is the rotation speed, 1 2 3, ,c c c  and 1 2,g g  are 

the constant values. From Eq. (1), we can find that 

the degradation follows an exponential trend.  

Considering the wear process and the function 

form of Eq. (1), the degradation function under a 

specific stress load can be expressed as: 

 

1

exp
t tW t   (2) 

where  denotes the shape parameter,  and  

are the scale parameters. In the absence of 

sufficient lifetime data, a reliable degradation 

model is required to characterize the hydraulic 

piston pump degradation process.  

3. Physics-informed Recurrent Gaussian 
Process 

3.1. Gaussian process degradation model 
Gaussian process regression is a non-parametric 

model that provides both the estimated value and 

the associated uncertainty for a prediction point, 

enhancing the reliability of the estimation. 

Assuming that the input matrix of Gaussian 

process can be defined as d NX R , and the 

output vector is defined as 1NY R . The 

relationship between the output vector and the 

input matrix can be expressed as: 

 y f x  (3) 

where  is a random variable representing 

independent, identically distributed Gaussian 

noise with variance. 

The Gaussian process degradation model can be 

constructed by its mean function m x  and 

covariance function ,k x x , and it can be 

expressed as: 

 ~ GP , ,f x m x k x x   (4) 

where  

 Em x f x   (5) 

 , Ek x x f x m x f x m x  

  (6) 

The mean function m x  indicates the expected 

value of f x  at the input point x , while the 

covariance function ,k x x quantifies the 

confidence level of m x .  
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According to the definition of Gaussian process, 

the observed value and function value of the new 

test point follow the joint Gaussian prior 

distribution, which can be expressed as: 

 
, ,

~ N ,
, ,

nm x K x x I K x xy
m x K x x K x xf

 

  (7) 

where ,K x x , ,K x x , and 

, ,
TK x x K x x  are the covariance matrices 

between merely training inputs, merely testing 

inputs, as well as training and testing inputs 

respectively.  is the noise observation.  

3.2. Physics-informed Recurrent Gaussian 
Process 
From the discussion of the degradation process of 

hydraulic piston pump has the time accumulative 

effect. Associating pump degradation data from 

consecutive time points is an effective approach 

to limit the pump degradation process. Comparing 

with the classical Gaussian process, we propose 

physics-informed recurrent Gaussian process (PI-

RGP) degradation model, as shown in Fig. 3. The 

PI-RGP model is reconstructed from two aspects: 

 

Fig. 3. The structure of PI-RGP 

(i) Recurrent mechanism 

The PI-RGP model can accurately capture the 

distinct wear degradation mechanism, integrating 

working condition information into the model 

input. In addition, the time-dependent cumulative 

effect is represented in a closed-loop structure 

through a feedback mechanism. Specifically, 

along with the monitoring degradation data , the 

predicted 1tx  from the previous step is fed back 

into the input vector to estimate the current tx . 

(ii) Physical-informed mechanism 

The mean function in Gaussian process represents 

the expected value of the sample function at each 

input point. The RGP model’s predicted value is 

closely linked to this mean function, as well as the 

deviation from the observed value. To enhance 

interpretability and prediction accuracy, the wear 

process model is used as the mean function in the 

RGP, that means:  

 m x W t   (8) 

In generality, the covariance function is chosen as 

the Gaussian kernel function. Once the mean 

function and covariance function are determined, 

the unknown parameters need to be estimated by 

Bayesian MCMC method (Ma et al., 2019). The 

marginal likelihood of PI-RGP obtained by using 

Bayesian rules.  

4. Case Study 
In this section, we present a case study on the 

degradation of hydraulic piston pump. The datasets 

are obtained from Ma et al. (2019). In a 750-hour 

endurance test of a hydraulic piston pump, pressure 

and flow were applied as the primary accelerating 

stresses. The return oil of the hydraulic pump is 

measured every hour. The smoothed data is selected 

for every 10 hours. After smoothing the original data, 

the smoothed values were selected at 10-hour 

intervals. Fig. 4 shows the degradation path of the 

return oil. From Fig. 4, we can find that the 

degradation trend has the characteristic of typical 

wear process. During the first 80 hours, the return oil 

flow increased rapidly. After 200 hours of operation, 

the oil return volume stabilized around 2.0 L/min 

and then gradually increased. 

n
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Fig. 4. Return oil flow degradation path (Ma et al., 

2019) 

We use PI-RGP model to describe the degradation 

process of return oil. The soft failure threshold is 

defined as 2.15 L/min. The oil-return flow data prior 

to reaching the soft failure threshold was used to 

estimate parameters for the first part, while the 

remaining data was used for parameter estimation of 

the second part. The failure threshold of this type of 

pump is 5.1 L/min.  

 
Fig. 5. The degradation prediction results of 

return oil.  

We use root mean square error (MSE) to measure 

the stability and accuracy of the PI-RGP model. 

Assuming that model 1 denotes the PI-RGP model, 

and model 2 denotes the PI-GP model. Fig. 5 shows 

the degradation prediction results of these two 

candidate models. We can find that PI-RGP model 

closely match with actual degradation values. The 

sum of MSE for model 1 is 0.3864, and the sum of 

MSE for model 2 is 0.6329. Therefore, the PI-RGP 

model is consistent with the actual degradation 

process. We also conduct statistical significance 

testing, and it shows that the p-value is less than 0.05. 

It is suitable to combine PoF model to construct a 

more accurate degradation prediction model for 

degradation analysis. In addition, it is necessary to 

construct degradation model for hydraulic piston 

pump, considering the dependent degradation value.  

5. Conclusion 

In this paper, we construct a novel degradation 

analysis model, namely as PI-PGR, for hydraulic 

piston pump. The study firstly focuses on 

measuring the wear of a specific type of hydraulic 

piston pump, which is identified as a primary 

contributor to major failure modes. Then, PI-RGP 

model is constructed by combing the wear 

degradation process model and formal 

degradation value. A real case study on 

degradation of hydraulic piston pump is used to 

verify the model we proposed. The results show 

that PI-RGP not only provides a reliable 

framework for predicting the degradation of 

hydraulic piston pumps but also aids in the design 

and optimization of aircraft components. 
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