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Motivated by its unique capabilities, quantum computation has gained significant attention over the last decade with 

numerous models and algorithms proposed for dealing with engineering challenges. The field of risk and reliability 

has also seen a growing interest in this area, with studies exploring Quantum Machine Learning for remaining useful 

life, Quantum Optimization for condition monitoring in civil structures, and Quantum Inference for enhancing 

Bayesian network models, to name a few. However, a common limitation across these works is the lack of thorough 

comparisons between the proposed quantum algorithms and their state-of-the-art classical counterparts. This critical 

gap must be addressed not only to evaluate the field's current state reliably but also to guide its development toward 

the most promising paths for achieving a quantum advantage. There are two key challenges to addressing this gap. 

First, quantum computation operates on fundamentally different principles than traditional computing, making direct 

comparisons – such as using the number of iterations – often infeasible. Second, large-scale, error-corrected 

quantum computers are not yet available, so machine-to-machine comparisons are also not yet possible. In this 

paper, we detail a novel methodology to evaluate quantum algorithms against their classical counterparts. Our 

technique is based on a simple observation: quantum computers do not extend the operations that a classical 

computer can perform. Instead, they have the potential to make them more efficient. As such, when large problems 

are considered, they ought to present a shorter runtime than classical algorithms to surpass, in any sense of the word, 

a classical algorithm. We validate the proposed methodology by applying it to an exciting application of quantum 

computation within the field of system reliability: the identification of minimal cut sets via the leverage of the Grover 

algorithm and Quantum Amplitude Amplification. 

 

Keywords: Quantum Computation, Performance Evaluation, Grover Algorithm, Quantum Amplitude Amplification, 

Minimal Cut Set Identification. 
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1. Introduction 

With the promise of enhanced performance, 

quantum computation has raised significant 

attention from the research community over the 

past decade. Initially, this attention was centered 

within the theoretical computer science and 

experimental physics communities. However, 

early applications have now emerged across 

various fields. The field of risk and reliability is 

no exception, with examples such as the use of 

Quantum Machine learning for Prognostics and 

Health Management (PHM) of rotating 

machinery (Maior et al. 2023) or quantum-based 

reliability estimation for power systems (Nikmehr 

and Zhang 2022). 

However, as potential applications gain 

traction within our community, a highly relevant 

question arises: do these early algorithms 

demonstrate evidence – or at least potential – of a 

computational advantage? Addressing this 

requires conducting non-trivial specialized tests 

and comparisons. However, these types of 

comparisons, while fundamental to advancing the 

field, are rarely observed in quantum applications 

within the domain of risk and reliability. This 

represents a significant gap that must be 

addressed if quantum computation is to achieve 

practical utility. 

In this paper, we propose a unified 

methodology for conducting an unbiased 

comparison between quantum and classical 

techniques. This methodology is designed to 

remain agnostic to specific applications or the use 

of any classical models. The methodology focuses 

on identifying the number of significant 

operations required for each quantum algorithm 

and estimating a lower bound for the runtime of a 

large-scale quantum computer to execute them. 

This allows for direct comparison with any 

classical algorithm, irrespective of its complexity 

or solution method. The approach is based on a 

simple observation: quantum computers do not 

expand the range of operations a classical 

computer can perform; they merely have the 

potential to execute them more efficiently. 

Consequently, for large and practical problems, 

quantum algorithms must demonstrate shorter 

runtimes than their classical counterparts to prove 

superior utility. 

The methodology is tested on a practical, 

relevant case study for the field of risk and 

reliability: the identification of Minimal Cut Set 

configurations in Fault Trees representing large-

scale systems. Using this case study as a basis, we 

provide an honest assessment of the applicability 

of this quantum-based technique towards the 

analysis of engineering systems, and most 

importantly, define relevant next steps in the field.  

The paper is organized as follows. Section 2 

provides a mathematical overview of the field of 

Quantum Computation, with particular emphasis 

on the Grover algorithm, which is the main 

quantum algorithm in this study. Section 3 

outlines the proposed methodology in general 

terms. Section 4 introduces the task of Minimal 

Cut Set identification and applies the comparison 

methodology to this significant task. Finally, 

Section 5 presents the concluding remarks and 

outlines potential avenues for future research. 

2. Theoretical Background: Quantum 
Computation 

This section provides a general introduction to the 

field of quantum computation. It begins by 

describing the process that a quantum computer 

performs from a mathematical standpoint. Then, 

it uses this formulation to define the concept of a 

quantum algorithm. Finally, it specifies the main 

quantum algorithm used in this paper: the Grover 

algorithm. 

2.1. Mathematical Formulation 

We begin by identifying the symbol  as a 

quantum system. The state of the quantum system 

 is represented using the complex vector 

notation , where  is a complex 

number and  is the vector of dimension  full 

of zeros, with the exception of position  

which contains a 1. From a physical point of view, 

the collection  represents all feasible 

states of system , enumerated in an arbitrary but 

consistent order. The linear combination of these 

feasible states represents our knowledge (and 

uncertainty) regarding the current state of the 

quantum system.  

This uncertainty is reflected through the 

complex coefficients , which encode the 

probability of finding the quantum state  in 
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state  through the relationship . 

An important consequence of this definition is 

that all quantum systems must consist of unit-

length vectors, since the quantum system is bound 

to be in at least one of its possible states, and 

therefore . 

The set  can be modified by applying a 

quantum operation to the quantum state. This 

operation is mathematically represented as the 

matrix multiplication between a matrix  and the 

vector . Two important considerations are 

noted regarding these matrices. First, they must be 

unitary to preserve the unit-length property of 

quantum states.  Second, since unitary matrices 

are closed under matrix multiplication, a quantum 

operation can be generated as the composition of 

several unitary matrices multiplied together. 

By modifying the set of complex coefficients, 

a quantum operation modifies the underlying 

distribution encoded in the quantum state. A 

quantum computer is a physical machine capable 

of both generating a quantum state and applying 

quantum operations to it. By doing this, the core 

objective is to modify the stochastic behavior of a 

quantum system to guide it toward states that 

represent the solution to a particular problem. 

To fulfill this objective, practitioners design 

quantum algorithms. The design of an algorithm 

for a quantum computer is done through the 

specification of the set of unitary matrices that are 

multiplied with the quantum system . In the 

following section, we delve deeper into this 

concept. 

2.2. Gate-based Quantum Computation 

In simple terms, a quantum computer is a 

machine composed of several two-dimensional 

quantum systems, commonly referred to as 

qubits. Following common quantum computing 

nomenclature, we describe qubits with the ket 

vector . 

The set of qubits available in a quantum computer 

is referred to as its registry. In a quantum 

computer, larger quantum states are produced by 

joining several qubits together. The operation 

used to join qubits is the Kronecker product 
between complex vectors: 

. This operation also results in a unit-length 

complex vector, but with a dimension that is 

exponentially larger than any of the vectors used 

as inputs. Additionally, while theory specifies that 

quantum states can have any integer dimension, 

in practice they are limited to dimensionalities 
equal to , .  

Similar practical restrictions are placed over 

quantum operations. While in mathematical terms 

any unitary operation is a valid quantum 

operation, quantum computers implement only a 

limited subset of them. Usually, these operations 

are applied over smaller quantum systems, 

. These operations are commonly referred to 

as quantum gates. Quantum algorithms are 

created by specifying which quantum gates are 

applied and to which qubits in the system. 

The Kronecker product is also used to join 

quantum gates of reduced dimension into 

quantum operations that can be multiplied with 

quantum states of dimension .  Of particular 

importance for this paper are the quantum 

operations denominated as Multi-Controlled 

NOT gates, or by their abbreviation MCNOT. 

These gates are used to impose conditional 

probability relationships between qubits, and are 

fundamental in the implementation of logic 

structures for quantum computation. 

A relevant limitation of quantum computers is 

related to the information that can be retrieved 

from a quantum state. Due to physical restrictions, 

the set  cannot be read directly from the 

machine. As a consequence, since the quantum 

state cannot be completely determined, the 

underlying probability distribution cannot be 

exactly characterized. However, it can be 

estimated through a process known as quantum 
measurement. During the quantum measurement 

operation, the quantum state is collapsed to one, 

and only one of the feasible quantum states 

contained in the set . The feasible state 

to which the quantum state collapses is controlled 

by the probability distribution defined as 

.  

This measurement process is destructive: 

when applied, the quantum state is lost from the 

machine. For this reason, the accurate estimation 

of the underlying probability distribution depends 

on the generation and measurement of multiple 

quantum states in series. This is a potential source 

of disadvantages for quantum computation, and 

represents one of the main motivations for this 

paper. 

Since each qubit in the system is a two-

dimensional quantum state, their independent 

measurement can only result in one of two 
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feasible states, i.e., its measurement result is a 

binary variable. With this, we can characterize the 

output of a global measurement operation as a 

bitstring of length , where  is the length of the 

qubit registry. This characterization is 

fundamental for quantum computation, as it 

enables the reformulation of the quantum state’ 

probability distribution as one that is defined over 

all bitstrings of length , instead of the vectors 

. We shall use this characterization for 

the remainder of this paper. 

2.3. Quantum Protocol: Grover Algorithm 

The Grover algorithm (Brassard et al. 2002) is 

one of the most important quantum protocols. Its 

objective is to selectively increment the sampling 

probability of a selected set of bitstrings from the 

set of all bitstrings of length . In simpler terms, 

it is used to alter the probability distribution 

induced by a quantum algorithm, increasing the 

likelihood of measuring a bitstring that fulfills a 

set of desirable characteristics. These desired 
bitstrings are identified through the definition of a 

Boolean function, , which only returns True 

when one of the desired bitstrings is used as input. 

Since the role of this Boolean function is to mark 

the bitstrings we wish to sample with a higher 

probability, it is commonly referred to as an 

Oracle function.  

In mathematical terms, the Grover algorithm 

is implemented through the application of a 

unitary matrix known as the Grover operator, . 

The Grover operator is defined as the composition 

. We explain each of the terms 

below: 

- : is the quantum operator used to initially 

implement into the quantum system a given 

probability distribution. This is, it represents 

all the quantum gates applied to the initial 

quantum state prior to the application of the 

Grover algorithm. 

- : is simply the conjugate transpose of . 

- : is a diagonal matrix given by 

. This 

matrix can be easily generated from a basic 

set of quantum gates. For a detailed 

explanation on this procedure, the reader is 

directed to (San Martin and Lopez 2024). 

- : is a quantum operation that implements 

the oracle function . The effect of  is to 

invert the phase of all coefficients that can 

be mapped to one of the desired bitstrings. 

If measuring the quantum state prior to the 

application of the Grover algorithm results in one 

of the desired bitstrings with a probability , then 

the probability after the application of the Grover 

algorithm is computed as , 

where: 

-  is the number of times the operation  is 

applied to the quantum state. 

-  depends on the initial probability, and is 

calculated as . 

As inferred from the sinusoidal expression, 

the probability of sampling a desired state can be 

equal to 1. This happens for the first time for the 

following particular value of : 

(1) 

As shown, the Grover algorithm can be used 

to enhance the probability of sampling desired 

bitstrings up to a probability equal to 1. This can 

be used to accelerate immensely certain sampling 

and search processes if one is capable of defining 

a correct Oracle function. However, a question 

that is often overlooked in the literature is what is 

the actual computational cost of applying the 

Grover algorithm. In this paper, we attempt to 

tackle this question via the application of the 

following methodology. 

3. Proposed Evaluation Methodology 

Estimating the resources required by a 

quantum computer to solve a computational task 

presents several difficulties. First, quantum 

computation operates on fundamentally different 

principles than traditional computing, making 

direct comparisons – such as using the number of 

iterations – often infeasible. Second, large-scale, 

error-corrected quantum computers are not yet 

available, so exact machine-to-machine 

comparisons are also not possible as of the time 

of this writing.  

As a solution, we implement an alternative 

strategy that returns a lower bound of the time 

cost it would require an ideal quantum computer. 

This time can be used as an idealized cost and 

compared against the time that it takes a classical 

algorithm to solve the same task in a traditional 

computer. While not definitive, and definitely not 
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exact, this comparison will shed light on whether 

current quantum algorithms can achieve any 

advantage. To justify this, we note a simple 

observation: quantum computers do not extend 

the operations that a classical computer can 

execute, instead, they have the potential to make 

them more efficient. As such, when large 

problems are considered, they ought to present a 

shorter runtime than classical algorithms in order 

to surpass, in any sense of the word, a classical 

algorithm. 

To estimate a lower bound on the execution 

time, an important consideration is that quantum 

algorithms are usually dominated by a limited set 

of quantum operations. These operations 

commonly fulfill two characteristics. First, they 

are applied over the whole qubit registry and, 

therefore, cannot be parallelized. Second, to 

generate them from the set of basic one and two-

qubit quantum operations, they need to be 

decomposed into an exponential number of gates 

(Barenco et al. 1995; Da Silva and Park 2022). In 

general, for most algorithms these operations are 

recognized as Multi-Control NOT operations. 

To estimate the time these relevant operations 

take in a quantum computer, we make use of the 

information provided by Microsoft Quantum 

through their publicly available software stack 

(Beverland et al. 2022). While the execution time 

is bound to decrease as quantum computers are 

enhanced and further developed, they offer a 

realistic estimate of current quantum 

performance. Table 1 presents the estimated times 

required by an MCNOT gate as a function of the 

qubits over which it is applied. It is interesting to 

note that this time increases linearly with the qubit 

count, and therefore interpolation can be used to 

accurately extend the results shown in Table 1 to 

any algorithm, even those that cannot be executed 

today due to resource limitations. 

We conclude this section by noting two 

relevant considerations. First, since quantum 

algorithms can be composed of thousands, if not 

millions of quantum gates, the implemented 

technique is purposefully designed as an ad-hoc 
methodology: it demands the analysis of each 

particular algorithm to identify those operations 

that control the total execution time. Second, a 

fundamental stage in the methodology is the 

multiplication of the estimated execution time by 

the number of executions required to solve the 

task. Due to the stochastic nature of quantum 

computation and the destructive result of the 

measurement operation, multiple executions in 

series are needed to accurately estimate the 

underlying probability distribution. As such, the 

total time required to solve a task can be 

computed as shown in Eq. (2). 

(2) 

Where and  stand for the total time, 

the execution time, and the number of executions, 

respectively. In the following section, we validate 

and exemplify the technique for the case of 

Quantum Fault Trees and Minimal Cut Set 

Identification. 

Table 1. Estimated time to execute a Multi-Control 

NOT gate using one target qubit and  control qubits. 

Estimations from the Quantum Resource Estimator 

(Microsoft Quantum,  (Beverland et al. 2022)). 

Number of 

Control Qubits 
Time [s] 

1 4.00E-06 

2 3.10E-05 

4 5.80E-05 

8 1.30E-04 

16 3.34E-04 

32 8.11E-04 

64 2.00E-03 

128 4.00E-03 

256 8.00E-03 

512 1.70E-02 

 

4. Case Study: Quantum Fault Trees and 
Minimal Cut Set Identification 

This case study considers standard, coherent 

fault trees with an arbitrary number of basic and 

intermediary events. We further assume that all 

basic events can be modeled using Bernoulli 

random variables  Finally, we assume that both 

the intermediary events and TOP events are only 

represented by the logic gates . As 

described in (San Martin, Parhizkar, and Droguett 

2022), any fault tree of these characteristics can 

be easily converted into a quantum algorithm. The 

resulting quantum model is denominated 

Quantum Fault Tree. A quantum fault tree is 

composed of a qubit registry of length equal to the 

count of basic, intermediary, and top events in the 
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original tree. For brevity, we refer readers to our 

previous work for details on how this conversion 

is performed (San Martin and Lopez 2024). Some 

readers may find particularly interesting the 

conversion from logical gates to quantum gates 

that is described in that reference. 

The objective of this case study is the 

identification of minimal cut sets within this fault 

tree and the posterior evaluation of its 

performance when compared to classical 

techniques. The quantum fault tree model can be 

used for this purpose, although in an indirect 

manner. To see how, note that any standard, 

coherent fault tree is just a graphical approach to 

express a Boolean function. As such, it can be 

used as an oracle operation within the Grover 

algorithm to increase the likelihood of sampling 

system states that verify this Boolean function 

(i.e., result in the TOP event evaluated as True). 

These states are recognized as cut-set 

configurations. While this may be useful for 

reliability quantification applications, it is not 

useful for minimal cut set identification: the set of 

cut-sets is considerably larger than the set of 

minimal cut sets. 

In order to make use of the quantum fault tree 

model for minimal cut set identification, we need 

to modify the underlying Boolean function to one 

that is verified only when a minimal cut set 

configuration is found. This function, denoted as 

, is given in Eq. (3), 

(3) 

 

where  represents the original fault tree 

Boolean function,   is a given system 

configuration, defined as the fail/no fail state of 

the basic events (BE), and  is a switch 

function, which changes the binary state of basic 

event  only if it originally failed. The reader can 

verify that this Boolean function is only True 

when the configuration  represents a minimal 

cut set.  

We apply Eq. (3) in conjunction with the 

Grover algorithm to increase the likelihood of 

obtaining minimal cut set configurations. As 

such, following a similar scheme than the one 

used to convert  into a quantum algorithm, Eq. 

(3) is also converted to an equivalent quantum 

operation. For a detailed explanation of this 

conversion process, the reader is referred to (San 

Martin and Lopez 2024). The resulting quantum 

operation is recognized as , previously 

introduced in Section 2.3. However, while this 

approach is demonstrated to be able to find 

minimal cut sets more efficiently than random 

Monte-Carlo sampling in reference (San Martin 

and Lopez 2024), it is unclear whether it can 

obtain significant advantages concerning modern 

minimal cut set solvers.  

In the following section, we apply the 

methodology described in Section 3 toward this 

case study, and evaluate how effective is the 

quantum algorithm in finding minimal cut set 

configurations when compared against SAT-

MCS (Satisfiability-MCS) algorithm (Luo, Wei, 

and Wan 2021), a state-of-the-art minimal cut set 

solver. As a basis for this comparison, we use a 

wide variety of benchmark fault trees derived 

from the literature (Luo, Wei, and Wan 2021).  

4.1. Implementation of the Evaluation 
Methodology 

In this section, the primary objective is to 

quantify a lower bound for the time it requires the 

quantum algorithm to find all minimal cut set 

configurations. The smallest component of the 

quantum algorithm is the execution and 

measurement of one Grover operator, 

. As demonstrated in (San Martin and 

Lopez 2024), the most time-consuming 

operations within  consist on  MCNOT sub-

operations over  qubits. One of these 

operations is applied in the construction of , 

while the second operation is applied in the 

construction of . The costs of  and its 

conjugate transpose are negligible in comparison. 

If we denote the execution time of an MCNOT 

operation as , a lower bound for the 

execution time of a circuit with one Grover 

operation applied to it is . 

Now, as mentioned in Section 2.3, the use of 

the Grover algorithm usually requires the 

application of multiple Grover operations. To 

simplify the analysis, we assume that the number 

of Grover operations applied to the circuit is such 

that the probability of sampling a minimal cut set 

is 1, i.e.,  is chosen as its optimal value: 

. To quantify this number, we need to 

compute the value of , which in turn depends 
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on the initial probability of randomly finding a 

minimal cut set configuration, , through 

. The probability  depends on the total 

number of minimal cut sets, , and the 

number of basic events, , through 

. Of course, the number of minimal cut 

sets in a fault tree is not known a priori. However, 

in this paper we use a suite of fault trees for which 

this quantity is known, and therefore they serve as 

an excellent benchmark the algorithm. 

Summarizing the previous paragraphs, a 

lower bound for the time required to find a 

minimal cut set configuration with a probability 

near 1 is estimated as: 

 (4) 

However, the task at hand is to find all 
minimal cut sets, not only one of them. Since the 

Grover algorithm increases the probability of 

finding desired bitstrings uniformly, the 

measurement of the circuit can return all minimal 

cut sets with equal probability. As such, we can 

easily compute the estimated number of 

measurements required to find all of them with a 

confidence level equal to . This number, derived 

from the coupon collector problem (Neal 2008), 

is equal to: 

 (5) 

where  is the n-th harmonic number computed 

at . For the results of this paper, we use 

. By combining Eq. (4) and Eq. (5), we 

can finally write a lower bound for the total time 

required to find all minimal cut sets 

configurations using the quantum algorithm: 

 (6) 

This number can be evaluated for all the fault 

trees used as benchmark in this paper, and 

compared to the time it takes a traditional 

computer to find all minimal cut sets using the 

SAT-MCS algorithm. 

4.2. Results  

Using a selection of fault trees from the 

benchmark presented in (Luo, Wei, and Wan 

2021), Eq. (6) can be used to estimate a lower 

bound for the time it would require to find all 

minimal cut sets using the Grover algorithm. This 

information is presented in Table 2. 

Table 2. Time required to find all minimal cut sets for 

a set of benchmark fault trees, presented in (Luo, Wei, 

and Wan 2021), using both the Grover algorithm and a 

classical state-of-the-art method known as SAT-MCS. 

Tree ID   
Grover 

Algorithm 
[s] 

 SAT- 
MCS 

[s] 
baobab3 80 24386 3.50E+14 5.27 

chinese 25 392 5.66E+04 0.03 

das9201 122 14217 7.94E+20 0.06 

das9202 49 27778 5.23E+09 0.04 

das9203 51 16200 7.91E+09 0.02 

das9204 53 16704 1.67E+10 0.02 

das9205 51 17280 8.21E+09 0.03 

das9206 121 19518 6.71E+20 0.15 

das9207 276 25988 3.75E+44 1.03 

das9208 103 8060 6.69E+17 0.56 

edf9201 183 579720 1.51E+31 0.30 

edf9202 458 130112 3.89E+72 0.72 

edf9203 362 20807446 1.92E+59 164.27 

edf9205 165 21308 3.98E+27 0.20 

edfpa14b 311 105955422 8.56E+51 1851.8 

edfpa14o 311 105927244 8.56E+51 1348.0 

edfpa14p 124 415500 1.14E+22 2012.9 

edfpa14q 311 105950670 8.56E+51 1558.9 

edfpa14r 106 380412 1.82E+19 1802.6 

edfpa15b 283 2910473 6.47E+46 12.01 

edfpa15p 276 27870 3.91E+44 12.57 

edfpa15r 88 26549 6.43E+15 12.42 

elf9601 145 151348 1.07E+25 270.02 

ftr10 175 305 1.05E+28 0.12 

isp9602 116 5197647 2.77E+21 0.24 

isp9603 91 3434 5.60E+15 0.12 

isp9604 215 746574 1.34E+36 0.18 

isp9606 89 1776 1.85E+15 0.05 

isp9607 74 150436 1.17E+14 0.08 

jbd9601 533 14007 2.40E+83 1.20 

To aid in the interpretation of the results, Fig. 

1 presents a graph of time-to-solution versus the 

number of basic events in the fault tree, . Note 

that for the classical algorithm, SAT-MCS, the 

time-to-solution does not depend on the number 

of basic events. However, for the quantum-based 

approach, the time-to-solution is strongly 

explained through an exponential relationship 

with .  
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Fig 1. Time-to-solution versus number of basic events 

for the fault trees presented in Table 1. 

5. Discussion and Concluding Remarks 

We offer three potential explanations for the 

lack of performance improvements by using 

quantum computation for this application. 

First, classical algorithms for minimal cut set 

identification commonly make full utilization of 

the internal structure of the fault tree, optimizing 

the search process. The Grover algorithm is 

agnostic to the fault tree structure, increasing the 

likelihood of all minimal cut sets uniformly. 

While this is a desirable property where uniform 

sampling is needed (for example, in circuit 

verification), it does not present advantages for 

this particular task. Second, classical algorithms 

are usually parallelizable, whereas the Grover 

algorithm requires the serial application of  

Grover operators. This operation cannot, by 

definition, be parallelized and therefore presents 

one of the main pain-points for Grover-based 

search algorithms. This is particularly 

disadvantageous for systems where the initial 

probability  is extremely low, causing  to be 

immensely high. Under these circumstances, even 

though the application of MCNOT gates is fairly 

fast, reaching at most the order of  seconds 

(see Table 1), the whole operation is quickly 

dominated by the amount of Grover operations 

needed. Third, the quantum-based algorithm 

performs a great deal of overwork by finding the 

same minimal cuts multiple times. While 

blocking strategies are available, they increase the 

qubit count of the circuits immensely, reducing 

the speed of MCNOT gates. 

While a quantum approach would perform 

quadratically faster than a classical one under the 

assumption of a black-box oracle function and 

using the number of samples as a metric for 

performance, these conditions are seldom found 

in practice. Therefore, the Grover algorithm, as it 

stands now, is incapable of offering practical 

advantages for the minimal cut set identification 

task.  
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