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In a globalized and interconnected world, the importance of reliability, maintenance, and quality continues to grow.  

At the same time, the prediction of the remaining useful life (RUL) is essential for maintenance planning, facing 

Prognostics and Health Management of technically complex products.  Given the importance of maintenance 

measures for a reliable product life cycle, it is all the more important to achieve the most accurate prediction results 

possible.  A relevant influencing factor here is the measurement uncertainty of the database used. 

This paper presents a case study on the impact of measurement uncertainty on the RUL prediction.  The study 

employs data from tests of cyclically stressed shape memory alloy wires.  Real data from long-term life tests 

conducted in a test rig are given.  Firstly, the RUL of the shape memory alloy wires is predicted using linear 

regression models.  The training data is fitted with a Gaussian least-squared regression model, and the RUL is 

estimated using forecasts generated by this model and an adaptive y-target value for the failure time. 

The second step is a comprehensive measurement uncertainty analysis, which determines and quantifies all relevant 

uncertainty components of the measurement process.  The extended measurement uncertainty is determined 

according to ISO 22514-7 and VDA 5. 

Thirdly, Monte Carlo simulations are conducted based on the original time series and the determined measurement 

uncertainty.  Representative time series are generated, for which each the RUL is predicted.  Subsequently, 

descriptive statistics are applied to the obtained set of simulated RULs, with the results compared to the original 

time series and the true RUL.  The paper concludes with a discussion of the results and an outlook on future work. 

 

Keywords: remaining useful life, measurement uncertainty, ISO 22514-7, VDA 5, linear regression,  

Monte Carlo simulation, shape memory alloys. 

 
 

1. Introduction 
In a globalized and interconnected world, the 

importance of reliability, maintenance, and 

quality continues to grow.  At the same time, the 

prediction of the remaining useful life (RUL) is 

essential for maintenance planning, facing 

Prognostics and Health Management of 

technically complex products.  Given the 

importance of maintenance measures for a 

reliable product life cycle, it is all the more 

important to achieve the most accurate prediction 

results possible.  A relevant influencing factor 

here is the measurement uncertainty of the 

database used. 

This paper presents a case study on the impact of 

measurement uncertainty on RUL prediction.  

The study employs data from tests of cyclically 

stressed shape memory alloy wires.  Real data 

from long-term life tests conducted in a test rig are 

given.  Three main steps are carried out.  Firstly, 

the RUL is predicted using a linear regression 

approach and a determined adaptive failure 

threshold.  As second, there is a comprehensive 

measurement uncertainty analysis according to 

ISO 22514-7 (International Organization for 

Standardization 2021) and VDA 5 (VDA 2021) of 

the test rig used as example of the case study.  

Lastly, the impact of measurement uncertainty on 

the predicted RUL is exemplarily determined on 

the basis of Monte Carlo simulations (Zio 2013). 
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2. Methodology 
This chapter delineates the methodological 

approaches utilized in the present study.  Section 

2.1 elucidates the prediction of the remaining 

useful life (RUL) employing linear regression 

models.  Section 2.2 addresses the measurement 

uncertainty analysis, and 2.3 describes the 

simulation concept used the present case study for 

determining the impact of measurement 

uncertainties on the RUL prediction. 

2.1. Remaining useful life prediction 
In this paper, the RUL is predicted based on a linear 

regression model.  Regression analysis is a 

statistical method that can be used to establish a 

functional relationship between two or more 

variables.  In this paper, the course of a variable y 

over the time variable x is modeled using a linear 

regression approach.  The estimation of the model 

parameters is conducted using the Gaussian least-

squares method.  A linear regression model is fitted 

with gradient a and intercept b, cf. Eq. (1).  For the 

use case, boundary conditions for a and b are set. 

(Bracke 2024) 

= + ;   < 0, > 0 (1) 

2.2. Measurement uncertainty analysis 
The approach presented for determining 

measurement uncertainties is based on the ISO 

22514-7 (International Organization for 

Standardization 2021) and VDA 5 (VDA 2021) 

standards.  The objective of this approach is to 

systematically analyze and calculate combined and 

extended measurement uncertainties to ensure a 

precise and traceable measurement process. 

1. Measurement task and measurement process 
description 
Definition of the measurement task and 

specification of the measurement process, 

including relevant boundary conditions. 

2. Analysis of the uncertainty components 
Identification of all relevant uncertainty 

components of the measurement process.  One part 

of these are the uncertainty components of the 

measurement system. 

3. Definition of the determination method 
Selection of suitable methods for determining the 

standard uncertainties: 

 Error limits: calculation based on given 

information, e.g. data sheets, considering 

various distribution models, 

 Standard deviation: Determination based on 

measurement series with at least 20 values, 

 ANOVA: application of the analysis of 

variance for uncertainty estimation. 

4. Calculation of the standard uncertainties 
Quantification of the standard uncertainties for the 

measurement process (MP) with the selected 

determination method. 

5. Formation of the combined uncertainty 
Quadratic addition of the determined standard 

uncertainties to form the combined uncertainty of 

the measurement process uMP (see Eq. (2)). 

=

+ { , , }

+ + + ,

+ + + +

+ , + +
,

 

 (2) 

6. Calculation of the expanded measurement 
uncertainty 
Derivation of the expanded uncertainty UMP on the 

basis of the combined standard uncertainty uMP 

using expansion factor k in dependence of the used 

scatter range, see Eq. (3).  In this case study, k is 

selected as 2, corresponding to a scatter range with 

a coverage of 95.45%, assuming a normal 

distribution model. 

= ×  (3) 

2.3. Simulation concept 
This chapter outlines the simulation concept 

utilized in the case study to determine the impact 

of measurement uncertainties on the RUL 

prediction. 

1. Specification of the measurement result 
The measurement result y is specified using Eq. (4) 

with the extended uncertainty UMP and measured 

value x. 

= ±  (4) 
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Given the relationship between the scattering range 

(here: 95.45%) and the quantile of the normal 

distribution (here: ± 2s), Eq. (5) is defined with 

standard deviation s. 

2 + 2  (5) 

2. Transformation 
It can be deduced from Eq. (4) and (5) that UMP is 

equivalent to 2s.  By rearranging the equations, Eq. 

(6) is derived: 

=
2

 (6) 

3. Simulation of time series using Monte Carlo 
simulation (MCS) 
A data pool with M data points per measured value 

is simulated for a time series with n measured 

values xi (i = 1,…,n).  This Monte Carlo simulation 

is based on the assumption of a normal distribution 

model, whereby standard deviation s and mean  

according to Eq. (6) resp. (7) are used.  It is 

assumed that the measurement uncertainty is 

constant over the time. 

=  (7) 

The selection of the number M of simulated data 

points per measured value x is based on the 

coverage p, as outlined in ISO/IEC GUIDE 98-

3/Suppl.1 (International Organization for 

Standardization 2008) and Guimaraes Couto et al. 

(2013).  The condition according to Eq. (8) applies 

in this context, ensuring a minimum number of data 

points to achieve the desired coverage probability.  

>
10

1
 (8) 

For a specified p = 0.9, a data point count of  

M = 100,000 is selected, thereby achieving an 

optimal balance between coverage, computational 

effort, and the available computing resources in the 

presented case study.  This step completes in the 

generation of a set of M simulated time series of 

length n, which are expanded by the original time 

series. 

 

4. Determination of the remaining useful life (RUL) 
The RUL is determined for each simulated time 

series using linear regression with a adaptive y-

target value for the failure. 

5. Analysis of the RUL results 
The M obtained RUL values are analyzed using 

descriptive statistics, and patterns are derived to 

evaluate the impact of the measurement 

uncertainty on the RUL prediction. 

3. Use Case 
This chapter outlines the experimental setup and 

the data sources used in the case study.  Section 

3.1 provides a description of the test rig used for 

life testing of cyclically stressed SMA wires.  

Section 3.2 presents the data sources, with Section 

3.2.1 focusing on the dataset for the RUL 

prediction and Section 3.2.2 describing the data 

used for the measurement uncertainty analysis. 

3.1. Test rig 
This case study is conducted using real data from 

life testing of cyclically stressed linear actuators 

made of shape memory alloys (SMA).  

Multivariate cycle data from long-term tests 

carried out experimentally in a test rig are given.  

Fig. 1 presents a photograph of the test rig.  In the 

test rig, three SMA wires are parallel fatigue 

tested.  The wires are subjected to cyclic current 

feed and cooling phases until failure.  Further 

details regarding the test rig construction, 

functionality, and the collected data can be found 

in Theren et al. (2022). 

3.2. Data base 
This section provides an overview of the data 

sources utilized for the study. Section 3.2.1 

describes the dataset derived from twelve tests for 

the RUL prediction, including measured variables 

and their processing.  Section 3.2.2 details the 

additional data sources used for the measurement 

uncertainty analysis, including sensor 

specifications, and a custom experimental setup 

for repeatability and reproducibility studies. 
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3.2.1. Remaining useful life prediction 
The RUL prediction is conducted using a series of 

twelve tests, each involving three SMA wires and 

executed under identical testing conditions.  This 

results in a total of approximately 350,000 cycles 

with measured variables including temperature 

[°C], voltage [V], current [A], force [N], and 

distance [mm].  The present study utilizes a 

summarized dataset, which compiles the 

minimum, maximum, and delta of the 

aforementioned measured variables for each test 

cycle.  The primary focus of the analyses is on the 

main output variable that exhibits a high 

correlation to runtime, namely the minimum 

distance per cycle.  In order to ensure robust and 

comparable results, the dataset is divided into 

three distinct sets: training (70%), testing (20%), 

and validation (10%) wires.  Each complete time 

series of a wire is randomly assigned to one group.  

The training wires are used to develop forecasting 

models, with each time series split into 70% 

training data (model fitting) and 30% testing data 

(verification).  The testing wires evaluate model 

transferability using a similar split within their 

time series.  The results presented herein focus on 

the test wires, while the validation wires are 

reserved for future analyses that extend beyond 

the scope of this study. 

3.2.2. Measurement uncertainty analysis 
The uncertainty analysis is based on three primary 

data sources, selected depending on the specific 

uncertainty component under consideration.  

Firstly, specifications obtained from the datasheet 

of the used laser sensor (Panasonic HG-C1050) is 

utilized.  The standard uncertainty u can be 

determined from the available information 

according to the following formula, under the 

assumption of a rectangular distribution with a 

scatter range of ±a: 

=
2

12
=

3
 (9) 

Secondly, complete time series of training and 

test wires from the RUL prediction database, with 

selected data points (e.g., repeated measurements 

after the run-in phase), are employed. 

Thirdly, a custom experimental series 

designed to assess repeatability and 

reproducibility precision is used.  The experiment 

is grounded in the %GRR method (AIAG 2010).  

The test objects, SMA wires (n = 3), are evaluated 

across the three test channels (k = 3) with repeated 

measurements (r = 10). The configuration of the 

setup ensures the requirement set in Eq. (10). 

× × 30 (10) 

Each test channel is equipped with one wire, and 

the procedure is as follows: 

1. Initiate the test, including a single run-in 

phase of about. 3,000 cycles. 

2. Perform r measurement cycles. 

3. Terminate the test and remove the wires. 

4. Reinsert the wires, swapping test channels. 

This sequence of steps is repeated until each wire 

has been tested in every channel. 

4. Case Study 
This chapter deals with the application of the 

methodology presented using the example of 

SMA wires.  First, the approach and results of the 

RUL prediction are described in Section 4.1.  This 

is followed in Section 4.2 by an analysis of the 

measurement uncertainty that arises when 

collecting the input data for the RUL prediction.  

Finally, Section 4.3 examines the impact of this 

measurement uncertainty on the prediction of the 

RUL. 

4.1. Remaining useful life prediction 
In order to make an accurate RUL prediction using 

linear regression as a statistical prognosis 

approach, it is necessary to determine a y-target 

value corresponding to the failure time.  The 

Fig. 1. Test rig for fatigue tests of three shape memory

alloys (SMA) as used as application example in this 

study. (a) complete test rig, (b) detailed view of one test 

channel. (Theren et al. 2022) 
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database's primary output variable, the minimum 

distance per cycle, displays a distinct pattern: an 

exponential decrease during the initial running-in 

characteristic, followed by an almost linear decline, 

and a sharp drop at failure.  A notable observation 

is the nearly constant ratio between the distance at 

the end of the running-in characteristic and the 

distance just before failure across all testing wires.  

Fig. 2 illustrates this relationship, highlighting the 

two critical points in red, with their quotient 

displayed as horizontal lines. 

 

Fig. 2. Determination of the failure threshold: 

Visualization of the distance at the end of the running-

in characteristic (first red point) and the distance before 

failure (second red point) with their quotient 

(horizontal red lines). 

Fig. 3 presents a regression analysis of these 

distance values for the training wires, revealing a 

strong linear correlation with a Pearson correlation 

coefficient of r = 0.99713.  Utilizing the average 

quotient of these distances, the y-target value for 

failure prediction is adaptively determined for each 

time series based on its minimum distance at the 

end of the running-in characteristic.  The RUL is 

calculated as the difference between the predicted 

failure cycle and cycle of the end of the training 

data. Further details regarding this determination 

and application of the failure threshold as well as 

the following boundary conditions for the forecast 

can be found in Auer and Bracke (2025). 

As RUL prediction approach, a linear 

regression model is selected as a straightforward 

yet effective method.  As shown in Auer and 

Bracke (2025), in the specified use case, this 

approach outperforms more complex models.  

However, the fundamental concept can also be 

implemented with other RUL prediction methods. 

 

Fig. 3. Determination of the failure threshold: 

Regression analysis of distance at the end of the 

running-in characteristics with distance before failure 

with correlation coefficient according to Pearson’s r. 

The linear regression model for the RUL 

prediction is fitted using exclusively the training 

data from the end of the running-in characteristic.  

The failure time is predicted by equating the 

regression function to the calculated y-target 

value (last distance value) and implementing 

mathematical transformations. 

Fig. 4 shows a representative RUL 

prediction result using this approach: The training 

data is represented in blue, with the subset utilized 

for fitting the model highlighted in light blue.  The 

test data is displayed in green.  The black smooth 

curve represents the prognosis model, while the 

dashed line indicates the forecast.  The predicted 

failure time is marked by a red point. 

The linear regression model accurately 

captures the linear range of the training data.  

However, as the time series progresses, the model 

underestimates the test data, resulting in an earlier 

predicted failure time, in this particular example, 

the discrepancy amounts to approximately 220 

cycles. 

With regard to the other testing wires, the 

mean absolute error between the real and predicted 

RUL is 1,701 cycles.  In 71.43% of the cases, the 

RUL is underestimated.  This underestimation of 

the RUL is advantageous for a practical 

application, as it enables the implementation of 

maintenance measures prior to the failure of the 

product. 
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Fig. 4. Representative RUL prediction result using 

linear regression. 

4.2. Measurement uncertainty analysis 
Analyzing the application case, eight uncertainty 

factors were identified. Four regarding the 

measurement system:  

 resolution uRE,  

 repeatability (at reference) uEVR,  

 non-linearity uLIN and  

 other influences regarding measurement 

system uMS_Other  

as well as four more regarding the measurement 

process:  

 repeatability (at test object) uEVO,  

 inhomogeneity of test object uOBJ,  

 comparability of gages uGV and  

 comparability of times uSTAB. 

In the following, the quantification of the standard 

uncertainties of all identified uncertainty factors is 

described before the combined standard 

uncertainties and the expanded measurement 

uncertainty are determined.  The measurement 

system's uncertainties were determined using a 

conservative approach with the assumption of a 

rectangular distribution.  The individual 

contributions were considered as follows:  uRE was 

derived from the scale division of the system, which 

is 0.001 mm.  Half of the scale division was used as 

a measure of the uncertainty.  uEVR is based on the 

repeatability of the device, which is specified in the 

data sheet of the distance sensor as 30 μm.  This 

information was included directly in the calculation 

of the uncertainty.  For uLIN, the value specified in 

the data sheet of ±0.1% of the measuring range (full 

scale) was used, with the measuring range set at 

±15 mm to account for the linearity deviation.  

Additionally, the temperature dependence of the 

sensor was identified as an uncertainty factor 

(uMS_Other).  According to the data sheet, the 

temperature dependence of the sensor is 0.03% of 

the measuring range per degree Celsius.  The 

measured temperature range from 20.28 °C to 

21.75 °C was considered.   

uOBJ was determined using the test series for 

RUL prediction.  To this end, 20 repeat 

measurements were used following the end of the 

running-in characteristic.  For each channel, a single 

wire was designated as the representative of all wires 

within that channel, with the objective of mitigating 

the introduction of additional uncertainty factors.  

The maximum of the determined standard 

deviations was adopted as uOBJ.  uSTAB was also 

determined using the test series for RUL prediction.  

Due to the degradation of the wire, the first three 

measured values after the running-in characteristics 

were used for each wire channel.  In this case, the 

highest standard deviation was used as a measure of 

uSTAB. 

The determination of the uncertainty values, 

uGV and uEVO, was achieved through the 

implementation of an analysis of variance 

(ANOVA) of the measurement data obtained from 

the custom experimental series, cf. Sec. 3.2.2.  A 

comprehensive analysis of the variances within the 

repetitions and between the test channels was 

conducted to quantify the repeatability and 

reproducibility of the system. 

The squared summation of all determined 

standard uncertainties, when root extracted, results 

in a combined standard uncertainty of uMP = 

0.79716 mm.  Assuming a normal distribution 

model with P = 0.9545, the expanded measurement 

uncertainty results in UMP  = 1.59432 mm. 
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4.3. Impact of measurement uncertainty to the 
predicted remaining useful life 
In this case study, the simulation concept described 

in Chapter 2.3 is applied to one test wire as an 

example in order to obtain initial findings on the 

impact of measurement uncertainties on the RUL 

prediction.  Fig. 5 shows the results of the RUL 

prediction for all M = 100,000 simulated time 

series as a box plot.  The real RUL and the RUL 

predicted from the original data set are also shown 

for comparison. 

 

Fig. 5. Box plot of predicted RULs from simulated time 

series in comparison to real RUL and predicted RUL 

form original data set. 

The majority of the simulated RUL values falls 

within the range of 0 and 10,000 cycles, as 

evidenced by the interquartile range in the box plot.  

However, there are a few outliers with notably 

higher values that exceed 30,000 cycles.  It is 

noteworthy that both the real RUL (represented by 

the blue dot) and the RUL predicted using the 

original data set (illustrated by the red triangle) are 

significantly below the median of predicted RULs 

of the simulated time series.  The distribution of the 

simulated RULs exhibits a right skew, which can 

be attributed to the inherent lower limit of the RUL 

set at zero. 

To obtain a more nuanced understanding of 

the distribution of the simulated RULs, these are 

categorized in a histogram, as illustrated in Fig. 6.  

The real RUL and the RUL predicted from the 

original data set are once again presented for 

comparison. 

 
Fig. 6. Histogram of predicted RULs from simulated 

time series in comparison to real RUL and predicted 

RUL form original data set. 

The hypothesis that there is a right-skewed 

distribution of the RULs is confirmed by the 

histogram.  It is noteworthy that again both the real 

RUL and the RUL derived from the original data 

set are positioned to the left of the distribution 

curve. 

Finally, the quantiles of the simulated results 

are calculated to depict a scatter range of the RUL 

based on the impact of the measurement 

uncertainty.  These quantiles are calculated non-

parametrically according to Hyndman and Fan 

(1996) and are documented in Table 1.  All 

essential parameters of the simulation are also 

listed there.   

Table 1. Overview of parameters of the simulation 

and key results. 

Parameter Value 

UMP 1.59432 mm 

Number M of simulated data points 100,000 

Real RUL 2,472 

Predicted RUL original data set 2,252 

0.01 quantile simulated RULs 110 

0.05 quantile simulated RULs 522 

0.1 quantile simulated RULs 1,019 

0.9 quantile simulated RULs 11,896 

0.95 quantile simulated RULs 14,222 

0.99 quantile simulated RULs 18,953 
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The analysis of the simulated RULs reveals a 

substantial variation in the resulting values when 

compared to the two reference values, the real RUL 

(2,472) and the predicted RUL of the original data 

set (2,252).  The underlying cause of this dispersion 

can be attributed to the significant expanded 

measurement uncertainty, particularly in relation to 

the value range of the degradation (see Fig. 2).  

5. Summary and conclusion 
In this paper, a simulation-based framework for 

analyzing the impact of measurement uncertainty 

on the prediction of remaining useful life (RUL) is 

presented and exemplarily applied in a case study 

with shape memory alloy (SMA) wires under 

cyclic stress.  The study consists of three key steps: 

1. Measurement uncertainty analysis 
The measurement uncertainty of the a SMA test rig 

is assessed using ISO 22514-7 and VDA 5 

standards, leading to the calculation of combined 

and expanded uncertainties, providing a replicable 

template for similar studies. 

2. RUL prediction 
Linear regression as a straightforward yet effective 

method is applied to predict the RUL based on the 

minimum distance per cycle, with an adaptive 

failure threshold. 

3. Simulation of impact of measurement 
uncertainty on the RUL prediction 

Monte Carlo simulations are performed to assess 

how measurement uncertainty influence the RUL 

prediction, showing a wide range of predicted RUL 

values of the simulated time series. 

The results indicate that measurement uncertainty 

significantly impacts the RUL prediction.  The 

study highlights the importance of minimizing the 

measurement uncertainty to improve the accuracy 

and reliability of RUL predictions, ultimately 

leading to the optimization of maintenance 

strategies. 

Future research will focus on optimizing the 

experimental setup to achieve more practical and 

accurate results.  Additional simulations with 

diverse test wires and load scenarios are planned to 

enhance robustness and transferability.  

Furthermore, development efforts will include 

adapting distribution models and utilizing 

functional relationships to better approximate RUL 

quantiles, enabling a more comprehensive 

assessment of the impact of measurement 

uncertainty on the RUL prediction. 
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