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Autonomous operation has the potential to significantly enhance inland waterway transport by facilitating a shift to 
zero-emission propulsion and contributing to the competitiveness to alternative transport modes like road and rail. 
Autonomous vessels integrate hardware, advanced digital and software systems, as well as humans-in-the-loop and 
therefore constitute complex Socio-Technical Systems, whose safety can be affected by random faults, as well as 
vulnerabilities to intentional cyber-attacks. Despite technological advancements that allow for crewless or remotely 
controlled vessels, autonomous or remote control needs to be enhanced with risk awareness to ensure that associated 
uncertainties can be managed in real-time, and that autonomous operation is both safe and resilient. To address these 

challenges, the EC-funded, Horizon Europe project AUTOFLEX (AUTOnomous and small FLEXible vessels) 
develops the SeaGuard tool, which is intended to perform real-time monitoring and risk assessment given faults, 
unsafe system interactions, and cyber-security threats, with the aim to facilitate reverting to a safe state within a 
specified time window by proposing appropriate risk control measures in the form of decision support to operators 
and relevant stakeholders. To achieve this, SeaGuard integrates detection of anomalies either in the form of cyber-
attacks or faults with real-time risk assessment and evaluation of candidate risk control measures. This paper 
describes the functions required for SeaGuard to accomplish its objectives, the approach that will be implemented 
for assessing the safety level, as well as a high-level overview of the supporting methodological framework. 

SeaGuard is expected to significantly contribute to the feasibility of autonomous operations in inland waterways 
and by extension to the competitiveness of this transport mode against land-based transportation. 
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1. Introduction 
In alignment with the strategy of the European 

Union (EU) to address the challenges related to 

reducing the environmental impact of 

transportation, as well as the impact of 

externalities, such as congestion, by shifting 

cargoes from land-based to water-based 

transportation modes (Essen et al. 2019), there is 

increased interest in enhancing the use of Inland 

2485



2486 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Waterways (IWW). However, IWW vessels have 

currently higher external costs per ton of 

transported cargo compared to land-based modes 

(Essen et al. 2019). In this context, there is a need 

to modernize the IWW fleet towards zero-

emission propulsion, which can be facilitated by 

autonomous operation as removing human-

centred design features (i.e. the bridge) may free 

space for batteries in the case of fully electric 
propulsion without compromising cargo carrying 

capacity (Bačkalov et al. 2024). However, despite 

the technological advancements that enable 

crewless or remotely controlled operation, there 

are uncertainties with respect to new and 

emerging risks autonomous ships may be exposed 

to, such as cyber-attacks that may lead to 

unavailability or malfunctioning of critical 

systems, such as propulsion (Bolbot et al. 2020). 

To address these challenges, autonomous 

ships require sophisticated frameworks for 
continuous monitoring and dynamic risk 

evaluation especially with increasing levels of 

autonomy and less human involvement (Johansen 

et al. 2023). Such frameworks can support the 

development of risk-based supervisory controllers 

that consider both safety and cyber-security (Utne 

et al. 2020). Although there have been 

developments in the field of real-time risk 

assessment for autonomous ships, there are 

challenges related to updating the supporting 

hazard analyses to consider new and emerging 
risks, the dependence on expert knowledge due to 

lack of historical data, as well as the limited 

integration of safety and cyber-security. 

The research problem addressed by our 

work is how appropriate risk control measures can 

be determined in real-time based on an estimate 

of the risk resulting from anomalies during the 

operation of autonomous ships. The objective of 

this paper is to describe the functionalities and 

methodological framework of the SeaGuard tool 

that will be developed for supporting the 

operation of a conceptual IWW vessel designed 
within the context of the EC-funded research 

project AUTOFLEX. This vessel will be, at least 

periodically, unmanned, will carry containers, 

and will be equipped with battery-powered 

electric propulsion and azimuth thrusters 

(Bačkalov et al. 2024). SeaGuard addresses the 

identified challenges through a real-time risk 

assessment framework that integrates fault 

detection with intrusion detection, which evaluate 

deviations from the norm without relying on 

historical data, with system and risk models that 

are jointly used for assessing the effect of reduced 

system capabilities to the likelihood of unwanted 

consequences. The relationship between cyber-

attacks and faults is considered in determining the 

impact on the system’s functionality. 

The rest of this paper is structured as 

follows: Section 2 reviews the literature related to 
methodologies used for real-time risk and cyber-

risk assessment. Section 3 describes the 

functionalities and underlying methodological 

framework of SeaGuard. Section 4 briefly 

discusses the novelty of our contribution. The 

paper concludes with a description of the next 

steps of our research. 

 

2. Related Work 

Models that aim to assess risks in real-time should 

use various sources of data, including sensor 

output, reflect dynamic changes in operation, 

including the impact of changes in subsystems or 

components, be updated when new information is 

available, identify Risk Influencing Factors 

(RIFs) that need to be monitored and model their 
impact on the risk level, as well as take 

uncertainty into account (Yang and Utne 2022). 

Our review of the literature on maritime 

real-time risk models shows that static and 

dynamic Bayesian Networks (BNs) are mainly 

used differing in terms of how the included risk 

factors are identified either exploiting the results 

of formal hazard analyses or based on information 

from literature reviews and expert knowledge. 

Spahic et al. (2023) have also highlighted the 

importance of providing contextual information 

resulting from risk analyses in real-time anomaly 
detection applications. 

Utne et al. (2020) developed a framework 

that uses the context provided by the Systems 

Theoretic Process Analysis (STPA) to create risk 

models in the form of static BNs that can be 

updated with real-time data depending on the 

frequency this data is available. The model is 

structured to reflect the following sequence: Input 

RIF, High-level RIF, UCA, and System-level 

hazard. High-level RIFs are identified from the 

scenarios resulting from STPA and Input RIFs are 
indicators that can be measured in real-time and 

are related to causal factors included in the 

scenarios. This framework was extended by 
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Johansen and Utne (2022) to include 

consequences as a result of system-level hazards 

and worst-case environmental conditions in the 

BN. The output is exploited in the form of a “risk 

cost” in a cost function that is subsequently used 

by a controller to make decisions during 

operation. Following a similar approach, Basnet 

et al. (2023) implemented techniques, such as 

Noisy-OR/MAX gates, Parent-Divorcing, and 
modular BN, to reduce the number of BN nodes 

that resulted from the STPA. 

Luo et al. (2024) developed a Dynamic 

Bayesian Network (DBN) that integrates static 

and dynamic risk factors, i.e. factors that are time-

dependent, that affect the real-time risk level 

during the berthing operation of MASS. The 

contextual information for the development of the 

risk model resulted from the application of Task 

Failure Modes and Effects Analysis (Task 

FMEA), as well as by the relevant literature and 
expert knowledge. In a less structured approach, 

Kristensen et al. (2022) developed a DBN suitable 

for Dynamic Risk Assessment (DRA) based on 

information derived from literature reviews that 

focuses on the effect of inadequate Situation 

Awareness (SA) and loss of power on the mission 

performance of an Unmanned Surface Vessel 

(USV). 

A different approach has been followed by 

Zeleskidis et al. (2020) in the domain of railway 

safety who use the results of STPA to develop a 
mathematical model in the form of an acyclic 

diagram that aims to assess the safety level of a 

system in real-time, which is characterized by the 

time remaining until accident occurrence and how 

close the system is to experiencing a loss. 

The models reviewed in the maritime risk 

domain have mainly been demonstrated in case 

studies that involve ship-related technical (e.g. 

system state and reliability), as well as 

environmental (e.g. weather, sea state, maritime 

traffic) risk factors that affect navigational risks 

(i.e. collision and grounding). Gomola and Utne 
(2024) focused on software controller failures by 

extending the STPA framework with the 

integration of the Systems Modelling Language 

(SysML) and used a case study involving the 

navigation and collision avoidance system of a 

semi-autonomous ferry. Although other types of 

risk factors, such as human-related and cyber-

security issues, have not been included in the case 

studies, the methodologies themselves have no 

limitation in this regard. In fact, Yang and Utne 

(2022) have highlighted the need for an online 

risk model to consider (cyber)security issues. 

Frameworks for offline cyber-risk 

assessment tailored specifically to autonomous 

ships have been developed, such as Maritime 

Cyber-Risk Assessment (MaCRA) that is a 

model-based approach that considers attacker 

profiles, ease of exploitation, and potential 
rewards (Tam and Jones 2019). Techniques from 

other domains have also been applied to 

autonomous ship architectures, such as 

Microsoft’s STRIDE threat modelling 

methodology (Kavallieratos, Katsikas, and 

Gkioulos 2019). However, these approaches do 

not address the relationship between safety and 

cyber-security. 

Bolbot et al. developed a structured 

approach for hazard identification that integrates 

risk assessment with cyber-security and security 
assessments in the initial design phase for 

autonomous IWW vessels (2021). The 

assessments are not done in parallel but are 

integrated into a single process. However, the 

authors propose conducting a dedicated cyber-

risk assessment to reduce the uncertainty related 

to the experts’ risk ranking, such as the CYber-

Risk Assessment for Marine Systems (CYRA-

MS) developed by Bolbot et al. (2020), which is 

based on the Cyber Preliminary Hazard Analysis 

(CPHA) and also considers safety-related 
consequences of cyber-attacks.  

Amro et al. investigated how cyber-attacks 

may trigger failures through the Six Step Model 

(SSM), which is based on the GTST-MLD 

notation and facilitates examining the 

interrelationship between safety and cyber-

security issues (2020). Cyber-attacks are 

identified from the implementation of the 

STRIDE methodology and failures from a 

Preliminary Hazard Analysis (PHA). The authors 

have not considered the consequences but 

identified safety and cyber-security 
countermeasures and the relationship between 

them based on how failures and attacks impact the 

functionalities of the system. 

Such frameworks can support the 

development of real-time cyber-risk assessments, 

similarly to how hazard analyses support real-

time risk assessments, combined with an Intrusion 

Detection System (IDS). Detecting cyber-attacks 

in real-time can accomplished by different 
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Machine Learning (ML) techniques, such as Deep 

Neural Networks (DNN) (Thirimanne et al. 

2022), as well as classifiers such as Naïve Bayes 

(NB), Random Forest (RF), and Decision Tree 

(DT) that are trained and evaluated using 

benchmark datasets, e.g. KDD Cup 99 (Alqahtani 

et al. 2020). 

A promising class of algorithms for 

application in anomaly detection (see Bayar et al. 
2015), as well as intrusion detection are Artificial 

Immune Systems (AIS) that are inspired by 

different theories about how the biological 

immune system identifies and responds to 

harmful microorganisms. Indicatively, Shen and 

Wang (2011) proposed an IDS based on the 

Negative Selection Algorithm (NSA). Pinto et al. 

(2022) developed a method for detecting 

anomalies in Cyber-Physical Systems (CPS) 

using a novel variant of the Dendritic Cell 

Algorithm (DCA). Wang et al. (2016) proposed a 
multi-class classifier based on negative selection, 

to distinguish between the following four 

operational modes of mining equipment: normal, 

transition, abnormal, and danger. 

 

3. The SeaGuard framework 

3.1. Objectives and functions 
The functionalities of SeaGuard comprise the 

following three main groups that are 

accomplished sequentially (Fig. 1): 1) detection 

and identification, 2) risk estimation, and 3) risk 

control and mitigation. 

The first objective of SeaGuard will be to 

detect anomalies with reference to the system’s 
“normal” or expected behaviour, as described by 

its operational envelope (see Fjørtoft and Holte 

2022). The detection will rely on gathering 

information in real-time from various system 

components (e.g. sensors that contribute to 

situation awareness, network traffic) and using it 

to quantify indicators of “symptoms” of irregular 

system behaviour. Such anomalies may either be 

attributed to random faults (e.g. sensor drift or 

saturation, or a fault in the thruster), or cyber-

attacks (e.g. high volume of network traffic from 
an external source that overloads the onboard 

network). SeaGuard will determine the likelihood 

of each possibility and subsequently identify 

which part of the system has been affected. 

The second objective of SeaGuard will be to 

prioritise the detected anomalies based on how 

they can propagate through the system and 

compromise its capability to achieve its intended 

functions. In this context, cascading effects 

between cyber-attacks and faults will also be 

assessed. For example, given high confidence that 

a cyber-attack is occurring, SeaGuard will assess 

the likelihood of resulting faults (e.g. in case 

critical navigation systems become unresponsive 

due to overload of the onboard network). Given 
high confidence that the anomaly is due to a 

random fault, SeaGuard will assess the likelihood 

of the system being more vulnerable to cyber-

attacks. 

Prioritization of anomalies will be 

accomplished using a risk metric that will take 

into account the reduction of the system’s 

capabilities and the severity of the consequences 

given the detected anomaly, as well as the 

associated uncertainties and background 

knowledge in the general form of a (C’, Q, K) 
triplet (Aven et al. 2018). SeaGuard will consider 

both cyber-security (e.g. data theft) and safety 

(e.g. grounding or collision accidents) related 

consequences either as a result of a cyber-attack 

or a fault. 

The third objective of SeaGuard will be to 

identify applicable mitigation measures 

depending on whether the anomaly is attributed to 

a fault or a cyber-attack and with the aim to either 

restore the system’s functionalities (partly or 

fully) or minimise risk given that normal 
operation cannot be resumed. These measures 

will be prioritized based on their expected 

effectiveness that will be defined with specific 

criteria. For example, in case the onboard network 

traffic is unusually high due to an external actor, 

rate limiting at the ship’s firewall would prevent 

further congestion in the network, and the 

network routers could be configured to block 

requests to broadcast addresses. 
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Fig. 1. The functionalities of SeaGuard. 
 

 

3.2. Methodology
The methodological framework for SeaGuard will 

integrate data-driven Machine Learning (ML) 

models designed for real-time detection of 

operational anomalies, probabilistic models for 
real-time risk assessment, and deterministic 

models for real-time response (Fig. 2). This 

approach ensures that the system will be adaptive 

and responsive to evolving threats within the 

operational environment of inland autonomous 

vessels. 

SeaGuard will simultaneously detect and 

identify cyber-attacks and random faults that 

manifest as anomalies in network traffic data and 

in the data produced by different system 

components that are essential for the autonomous 
operation of the vessel (e.g. RADAR, GPS etc.) 

respectively. This parallel approach provides 

robustness and comprehensiveness to 

safeguarding critical onboard systems. Detecting 

fault-related anomalies will be accomplished by 

using data available in real-time to quantify 

derivative variables that describe the system state 

and from which “symptoms” of abnormal 

operation may be identified. The system state 

estimator will feed this information into an 

algorithm based on the principles of Artificial 

Immune Systems (AIS), such as the Negative 
Selection Algorithm (NSA). This data AIS (dAIS) 

will compare how the system currently functions 

against the normal operational envelope, as well 

as identify which system component is the source 

of the fault.  

Detecting anomalies associated with cyber-

attacks will be accomplished by a two-layer 

approach that will monitor network-wide and 

component-specific traffic. The first will involve 

a cyber-attack classifier to identify relevant 

patterns in network traffic between the vessel’s 
Local Area Network (LAN) and its network 

gateway, creating a critical monitoring layer that 

isolates sensitive internal communications from 

external threats. Similarly to the work by 

Thirimanne et al. (2022), a real-time feature 

extraction mechanism will extract data from the 

network traffic and provide input to a multi-class 

classifier, such as a Deep Neural Network (DNN), 

which will detect and classify the cyber-attack 

with specific probability scores. Training of the 

model will be done using benchmark datasets for 

intrusion detection, such as the KDD Cup 99 and 

its refined version NSL-KDD, which simulate 

network traffic with both normal and malicious 

activities. 

For monitoring component-specific cyber-

attacks, each component will be connected to 

dedicated network traffic feature extractors that 

will be integrated into the gateway. The purpose 
of these extractors will be to filter the data packets 

generated by each component, extract relevant 

features, and provide the output to a dedicated 

traffic AIS (tAIS). The tAIS will perform 

anomaly detection ensuring that deviations from 

normal behaviour are flagged in real time and that 

specific components being attacked can be 

identified. The output from the multi-class 

classifier will be concatenated with the output of 

the tAIS to increase confidence in the detection of 

a cyber-attack. By leveraging both tAIS and 
dAIS, the aim is to identify the source of the 

detected anomaly as either a cyber-attack or a 

fault and consequently achieve comprehensive 

severity estimation and effect assessment on the 

ship’s critical components. 

After identifying the affected component, 

the SeaGuard Risk Estimator will first determine 

how the system’s capabilities will be reduced 

considering cascading effects by using a model 

that describes both functional and structural 

aspects of the system, such as the one used by 
Amro et al. (2020) or a model similar to the 

control structure used in STPA. This will be used 

as input to a risk model that will describe the 

relationship between system capabilities and 

consequences in probabilistic terms, such as a 

Bayesian Network. 

The SeaGuard Risk Control Engine will 

propose appropriate mitigation measures based on 

a pre-defined library of candidates, which will be 

tailored to the vessel’s operational requirements, 

depending on the type of the detected anomaly 

and the criticality as indicated by the result of the 
risk model. To ensure rapid and effective 

response, SeaGuard will use specific criteria to 

select the most appropriate candidate, such as 

minimizing disruptions to the vessel’s 

autonomous functions and risk reduction 

effectiveness. 
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Fig. 2. The methodological framework of SeaGuard. 

4. Discussion 

SeaGuard will be designed to accomplish the 

following functionalities: 1) detection and 
identification, 2) risk estimation, and 3) risk 

control. The underlying methodological 

framework presented in this paper is expected to 

enhance vessel resilience in terms of anticipating 

disturbances, monitoring performance, and 

responding to hazards, which are the elements of 

resilient systems according to Hollnagel et al. 

(2006). 

SeaGuard is expected to be suitable for 

providing real-time risk awareness as it fulfils the 

requirements for online risk models identified by 

Yang and Utne (2022). It will use various data 
sources to obtain information in real-time to 

assess the impacts of detected anomalies on the 

functionality of the system. Furthermore, 

SeaGuard will consider the effect of RIFs in the 

detection and identification stage, which will be 

reflected in the variables used for estimating the 

system state, as well as in the risk estimation 

stage, which will be reflected in the structure of 

the risk model. The methodological approach of 

SeaGuard includes uncertainties that relate to the 

type and source of the detected anomaly given the 
real-time information that will be used, as well as 

the background knowledge supporting the models 

used to assess the reduction in system capabilities 

and the severity of the consequences. To increase 

confidence in the effectiveness of the proposed 

risk control measures, our methodological 

framework needs to include appropriate 

characterization of uncertainties, in alignment 

with the discussion in Aven et al. (2014), adapted 

for the real-time assessment setting. Although a 

detailed discussion on this aspect is outside the 

scope of this paper, a hybrid approach may be 

preferred, which will involve complementing the 
probabilistic descriptions with other measures of 

uncertainty. Indicatively, a possible approach 

would be to combine Dempster-Schafer’s Theory 

of evidence for the anomaly detection with a 

semi-quantitative approach for evaluating the 

strength of background knowledge supporting the 

models in the SeaGuard Risk Estimator (see Aven 

2013).  

The reviewed methods for real-time risk 

assessment use information as evidence in BNs that 

model the causal relationships between RIFs to 
update the probability of accident occurrence and 

their consequences. As the risk models are created 

from contextual information provided by different 

hazard analysis techniques, risk is assessed by 

updating the probabilities of pre-defined hazardous 

scenarios in real-time. Furthermore, the 

probabilistic relationships are quantified with 

available historical data and expert knowledge 

where data is not available. 

Updating the probabilities of pre-defined 

scenarios makes including new and emerging risks 
challenging considering that the hazard analysis 

needs to be updated offline (see Escande, Proust, 

and Le Coze 2016). By integrating real-time 

anomaly detection with risk assessment, SeaGuard 

aims to address this by effectively creating 

scenarios given a triggering event in real-time 

through by combining a system model with a risk 

model. However, SeaGuard will rely to some 

extent on offline hazard analyses to provide context 

for the anomaly detection, which aims to address 

the shortcomings of purely data-driven 

approaches, i.e. providing too many false 
positives (noise) and false negatives (overlooking 

safety critical anomalies), as shown by Spahic et 

al. (2023). 

In offline risk assessment frameworks that 

consider both cyber-security and safety, the 

relationship between the two is treated in terms of: 

1) how cyber-attacks can lead to safety-related 

consequences (see Bolbot et al. 2021), and 2) how 

cyber-attacks may trigger failures (see Amro et al. 
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2020). SeaGuard will consider these types of 

relationships and will also consider how faults 

affect the likelihood of making the system 

vulnerable to cyber-attacks by integrating intrusion 

detection with real-time risk assessment. 

The immune paradigm was selected as the 

basis for SeaGuard’s anomaly detection due to the 

benefits of this class of algorithms in terms of the 

data required for training and their classification 
performance compared to other types of classifiers. 

AIS algorithms typically only require data that 

describe normal operation for training (see Bayar 

et al. 2015), which makes them suitable for cases 

where historical data are not widely available, 

such as the case of autonomous ships. 

Furthermore, using this approach in real-time 

implies that a set of circumstances is evaluated as 

“hazardous” not solely through the probability of 

leading to an accident, but also from the 

dissimilarity to how the system is normally 
expected to operate. In terms of performance, the 

literature indicates that AIS algorithms perform 

with higher classification accuracy compared to 

Neural Networks (NN) and Support Vector 

Machines (SVM) (Wang et al. 2016), as well as 

compared to other anomaly detection techniques, 

such as deep neural networks and regression 

approaches, although in some cases false alarm 

rates may be higher (Pinto, Pinto, and Gonçalves 

2022). 

5. Conclusion 
The SeaGuard tool aims to provide real-time risk 

awareness to the autonomous operation of IWW 

vessels by detecting anomalies either due to 

cyber-attacks or random faults, identifying which 

system component has been affected, assessing 

how the anomaly can impact the system’s 

functionality and subsequently the likelihood of 

unwanted consequences. Based on the estimated 

risk and the anomaly type, SeaGuard will provide 

decision support in the form of proposing the 

most suitable risk control measure. 

Methodologically, SeaGuard addresses the 
challenges related to real-time risk assessment by 

integrating anomaly detection with risk 

assessment without relying on a set of pre-defined 

hazardous scenarios, exploiting immune-inspired 

classifiers that evaluate similarity to a norm 

without relying on historical data, and by 

considering the cascading effects on the system’s 

functionality between cyber-attacks and faults. 

Future research steps include 

complementing the framework with techniques to 

characterize uncertainty, developing and testing 

the algorithms and models that will be integrated 

through a suitable simulation framework. Finally, 

SeaGuard is expected to significantly contribute 

to ensuring safe and resilient autonomous 

operation of IWW vessels and consequently 

unlocking their potential towards minimizing the 
external costs of transportation. 
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