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The effective detection of faults in wind turbines is crucial to ensure their reliability and reduce downtime. However, 
the availability of real-world monitoring data representing various fault scenarios is often limited, making it difficult 
to test and validate fault detection algorithms. This paper presents a method for generating synthetic wind turbine 
monitoring data using OpenFAST, an open-source simulator developed by the National Renewable Energy 
Laboratory (NREL). The simulator is used to model the dynamic behavior of a wind turbine under both normal 
operating conditions and in a specific fault scenario, which is rotor unbalance. By leveraging OpenFAST’s ability 
to simulate the physical response of a wind turbine to environmental conditions and mechanical faults, we can create 
a comprehensive dataset that mimics real-world monitoring data. This dataset covers various operating conditions, 
including different wind speeds and directions, enhancing the generalizability of the data for fault detection 
purposes. The generated data is intended to support the development and testing of fault detection tools, providing 
a benchmark for algorithms that rely on monitoring data to predict, detect, and diagnose failures in wind turbines. 
The synthetic dataset aims to fill the gap between theoretical models and real-world applications, facilitating the 
design of more robust and accurate fault detection methods. This study demonstrates the potential of using high-
fidelity simulations for reliability analysis and underscores the value of synthetic data in advancing predictive 
maintenance strategies for renewable energy systems. 
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1. Introduction 
The increasing reliance on renewable energy 
sources, such as wind power, has emphasized the 
need to ensure the reliability and operational 
efficiency of wind turbines. Operating under harsh 
environmental conditions, critical component 
failures in wind turbines can result in significant 
energy losses, high maintenance costs, and potential 
environmental impacts. Early fault detection 

through data-driven monitoring systems is essential 
to enhance reliability and reduce maintenance 
expenses. 

Condition Monitoring Systems (CMS) play a 
vital role in identifying potential faults before they 
escalate into critical failures (Souza et al. 2022). 
However, a major challenge in developing 
effective predictive models is the limited 
availability of real failure data, as failures are 
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relatively rare in well-designed and maintained 
turbines. This limitation underscores the 
importance of synthetic data generation to expand 
the datasets available for training and validating 
robust fault detection models. 

Several studies have explored innovative 
approaches to synthetic data generation in the wind 
energy sector. For instance, hybrid digital twins 
have been developed to combine real operational 
data with physical models, generating synthetic 
datasets that simulate diverse fault conditions 
(Pujana et al. 2023). Similarly, synthetic SCADA 
datasets have been created to replicate gearbox 
failure scenarios, enhancing the robustness of fault 
detection systems (Milani et al. 2024). Generative 
adversarial networks (GANs) have been utilized to 
produce synthetic fault data, addressing the 
limitations of small sample sizes in wind turbine 
fault classification (Liu et al. 2019). 

Data-driven approaches, such as GANs or 
other machine learning models, rely on the 
availability of real failure datasets for training, 
which can be a limiting factor when such data is 
scarce. In contrast, physics-based simulation 
models enable the generation of fault scenarios 
grounded in the fundamental principles of system 
dynamics, ensuring physically consistent results 
without the need for historical failure data. 

This study proposes a novel methodology for 
generating synthetic monitoring data using the 
OpenFAST simulator (J. M. Jonkman and Buhl 
2005). This methodology enables the creation of a 
comprehensive dataset that reflects real operational 
conditions, including simulated rotor unbalance 
failures under different wind and load scenarios. 

2. The Proposed Method  
Synthetic data generation demands the adoption of 
reliable and accessible simulation tools so the 
validity of the results can be confirmed by the 
scientific community. OpenFAST, an open-source 
simulation platform developed by NREL (J. M. 
Jonkman and Buhl 2005) to analyse the aeroelastic 
interactions between the wind and the turbine 
during the energy harvesting process is adopted to 
calculate the output variables that describe the 
dynamic behaviour of the wind generator. It is 
considered a benchmark computational code 
comprising a set of modules which enable the 
generation of wind profiles, the description of the 
structural stiffness, inertia and damping properties 
of the complete wind turbine model together with 

the definition of control strategies and parameters. 
To further facilitate the replication of the analyses 
results, a widely studied baseline 5MW turbine 
model also conceived by NREL (J. Jonkman et al. 
2009) was chosen to exemplify the application of 
the proposed methodology. 

It is important to note that, although 
OpenFAST was not originally developed to 
simulate the operation of wind turbines under 
faulty conditions, it is possible to do so by changing 
some of the software's input parameters so that the 
physical model represents the machine's operation 
under these conditions. Such changes, which 
constitute the novelty of this work, allow us to 
extrapolate the use of the software to generate 
synthetic data for monitoring wind turbines under 
faulty conditions. In this work, we will focus on 
changing the software's input parameters to 
simulate the operation of a turbine that presents an 
unbalance, a relatively common fault in this type of 
machine. In this chapter, section 2.1 presents a 
description of OpenFAST and its modules, section 
2.2 shows the characteristics of the modeled and 
simulated wind turbine, section 2.3 describes the 
wind conditions considered in the simulations 
performed, and finally, section 2.4 presents the 
different levels of unbalance modeled for the 
simulations performed. 

 
2.1. Simulation Platform: OpenFAST Overview 

The OpenFAST software streamlines the 
simulation of wind-turbine interactions in energy 
extraction by providing a multiphysics tool 
combining aerodynamic and structural modeling. It 
integrates 15 modules, four of which were used to 
generate the synthetic data in this study. 

The AeroDyn module evaluates aerodynamic 
performance by dividing blades into segments 
based on geometric properties (aerofoil profiles). 
Using Beam Element Momentum (BEM) Theory, 
it calculates lift, drag, and moments, incorporating 
corrections for axial and tangential induction and 
dynamic effects like stall delay and aerofoil 
dynamics (J. M. Jonkman and Buhl 2005). 

The ElastoDyn module handles structural 
dynamics, analyzing the turbine’s blades and tower 
under aerodynamic, gravitational, and centrifugal 
loads. Using beam elements with six degrees of 
freedom per node, it simulates the dynamic 
behavior of the turbine, including drivetrain 
torsional vibrations (J. M. Jonkman and Buhl 
2005). 
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ServoDyn implements active control 
strategies for generator torque and blade pitch, 
optimizing energy capture below rated speed and 
maintaining constant rotor speed and power above 
rated speed up to 25 m/s (Fig. 1). It also simulates 
electrical systems, addressing power generation 
and grid interaction under extreme conditions (J. 
M. Jonkman and Buhl 2005). 

 

 
Fig. 1. Wind turbine power curve; region 2 features 
variable rotor speed controlled by generator torque; 
region 3 maintains constant drivetrain speed (Wright, 
2004). 

 
The InflowWind module couples wind 

models generated by TurbSim with OpenFAST, 
enabling simulations ranging from idealized wind 
profiles to complex turbulent environments  (J. M. 
Jonkman and Buhl 2005). TurbSim, compliant 
with IEC 61400-1 standards (IEC 2019), generates 
three-dimensional turbulent wind grids that capture 
spatial and temporal fluctuations, enhancing the 
realism of wind turbine simulations (Churchfield et 
al. 2012). These grids are constructed using the 
Kaimal turbulence spectrum, which characterizes 
turbulence energy distribution across frequencies  
(Subramanian, Chokani, and Abhari 2016). Fig. 2 
illustrates a turbine positioned within the wind grid. 

 

 
Fig. 2. Wind field generated by TurbSim (B. J. Jonkman 
2009). 

By integrating Large Eddy Simulation (LES) 
with sub-grid turbulence models, TurbSim refines 
the wind field for high-interaction regions while 

ensuring computational efficiency in downstream 
areas. This approach accurately simulates wind-
turbine interactions, including the dynamic effects 
of wind on blades, towers, and nacelles. 

 
2.2. Wind Turbine Model 
The 5MW turbine baseline model made available by 
NREL was considered appropriate for this study due 
to its representative size and the easiness to compare 
and check the results of the simulations with those 
of previously published works; the gross properties 
of the baseline model are given in Table 1. Though 
this model was initially proposed for an offshore 
turbine, all the calculations assume the tower 
clamped onshore. A detailed description of the 
geometric, structural and inertia properties of the 
rotor (hub and blades), the nacelle and its 
components, the drivetrain and the tower is provided 
in (J. Jonkman et al. 2009). 

Table 1. Gross properties of the 5MW turbine 
baseline model (J. Jonkman et al. 2009). 

Property Value 
Rating  5 MW  
Rotor Orientation, 
Configuration Upwind, 3 Blades 

Control Variable Speed, 
Collective Pitch 

Drivetrain High Speed, Multiple-
Stage Gearbox 

Rotor, Hub Diameter 126 m, 3 m 
Hub Heigth 90 m 
Cut-in, Rated, Cut-Out 
Wind Speed 3 m/s, 11,4 m/s, 25 m/s 

Rated Tip Speed 80 m/s 
Overhang, Shaft Tilt, 
Precone 5 m, 5º, 2,5º 

Rotor Mass  109,389.852 kg  
Blade Mass 17,536.613 kg 
Nacelle Mass  240,000 kg 
Tower Mass  347,460.250 kg 
Coordinate Location of 
Overall CM (-0.2 m, 0.0 m, 64.0 m)  

 
2.3. Wind Conditions 
Three average wind speed values are enough to 
simulate representative normal operation 
conditions: 7m/s (generator torque control region - 
see Figure 1), 10,5 m/s (transition region) and 
14m/s (above rated speed). Considering three 
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turbulence levels, 12%, 14% and 16%, as described 
in IEC 61400-1 for standard wind turbine classes, 
results in nine combinations of wind parameters 
that cover a wide range of normal operating 
conditions 
 
2.4. Unbalance Levels 
To adopt representative real world acceptable 
residual unbalance levels, design guidelines from 
(IEC 2019) regarding ice formation will be 
followed. 

According to the standard, 750 h of annual 
expected long-term rotor icing may be assumed for 
load calculations; in this context, the mass 
unbalance resulting from icing of the blades 
provides realistic load estimates to determine the 
range of unbalance values considered in the 
synthetic data generation. The ice mass distribution 
(mass / unit length) increases linearly from zero in 
the rotor axis to the maximum value at the rotor tip 
and the ice load distribution is calculated as shown 
in Eq. (1) (IEC 2019): 

 
 M(r) = A × C85% × r (1) 
 
where M(r) is the mass distribution on the leading 
edge of the rotor blade [kg/m], A is 0.125 [kg/m3], 
C85% is the chord length at 85% rotor radius [m], 
and r is the radial position from rotor axis (hub 
centre) [m]. Blade aerodynamic properties of the 
5MW baseline turbine are presented in (J. Jonkman 
et al. 2009); thus, 85 % of a 63 m rotor radius 
corresponds to ~54m, which, indicates an aerofoil 
section placed between nodes 14 and 15 (airfoil 
NACA64), resulting in C85%~2.5m. From Eq. (1) 
the total ice mass amounts to 621kg and its mass 
centre is located 42m from the rotor axis; these 
results are consistent with previous ones regarding 
a much smaller turbine model Senvion MM92 
CCV with 2.05 MW rated power, 80 m hub height 
and 92 m rotor diameter (Rissanen et al. 2016) 

For ultimate load analysis, ice mass 
formation on two blades and aerodynamic 
penalties on all rotor blades should be investigated, 
according to (IEC 2019). A simple calculation 
using the previous results shows that the 
corresponding rotor mass centre is located ~0.24m 
from the hub centre (Obs.: the result negligibly 
changes if one adopts icing on a single blade). For 
fatigue analysis, ice mass on all rotor blades except 
one rotor blade where 50% of the ice mass should 
be considered, in addition to aerodynamic penalties 

on all rotor blades, should be investigated; this 
results in a ~11.7cm rotor mass eccentricity. Since 
this study does not include aerodynamic penalties, 
considering only the effects of mass unbalance 
yields a less severe loading condition, which means 
that an even higher level of mass unbalance could 
be necessary to reach the same loads. 

It is noteworthy that this level of residual 
unbalance is considerably higher than the ones 
adopted in previous studies which consider 
unbalance quality scale G of ISO 21940-11:2016 
standard (ISO 2016) in accordance to (Kusnick, 
Adams, and Griffith 2015). Nevertheless, ISO 
21940-11 standard does not cover rotation values 
below 20 rpm; for such very slow machines the 
permissible residual specific unbalance “eper” 
ranges between ~10,000 and ~100,000 [g.mm/kg] 
according to field common experience (see ISO 
21940-11, Figure 2, pg.9 (ISO 2016)). Thereby, 
extrapolations show that the corresponding 
permissible residual unbalance for a ~110,000 kg 
rotor rotating at 12,1rpm could be defined between 
~1,650 and ~66,000 [kg.m]. For instance, the 
previously calculated 621kg ice mass located 42m 
from the rotor axis results in a residual unbalance 
of ~26,100 kg.m which may be compatible with the 
operational conditions of a wind turbine properly 
designed. 

 Based on field observations, one of the most 
common causes of blades failures arises from mass 
losses close to their tips due to lightning strikes 
(Katsaprakakis, Papadakis, and Ntintakis 2021). In 
this context, three different levels of mass 
unbalance resulting from mass losses near blade 
tips are herein adopted to simulate unbalanced 
operation; Table 2 describes the percentages of 
blade mass loss and rotor mass related properties.  

The 1% blade mass loss yields a loading 
condition similar, though milder, to the one 
considered in the fatigue analysis of iced rotors 
described above, and results in a centrifugal force 
of ~17.63 kN, which corresponds to 1.64% of the 
rotor weight; this unbalance causes a small 
magnitude load fluctuation. The other two 
unbalance levels corresponding to 3% and 5% 
blade mass losses are classified as medium and 
severe, respectively. 

Combining the nine wind conditions 
described in Section 2.3 with the three unbalance 
levels shown in Table 2 one gets a set of 27 
unbalanced rotor operation conditions. In total, 
therefore, 36 different simulations were performed: 
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9 representing the turbine behavior without 
unbalance in each of the different wind conditions, 
and 27 with unbalance. 

Table 2. Percentage of blade mass loss and rotor 
residual unbalance (blade mass original value: 
17,536.62 kg). 
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1% 17,361.30 109,824.60 10.0 ~11,000 127 

3% 17,010.50 109,473.90 30.3 ~33,200 382 

5% 16,659.80 109,123.20 50.6 ~55,200 636 
*G (quality grade) is calculated using the expression Uper = 
9.549∙G∙m/n (mm/s) (ISO 2016), with Uper being the adopted 
rotor permissible residual unbalance, m being the rotor mass 
(kg) and n being the nominal speed (rpm). 

 

3. Results 
OpenFAST provides a variety of outputs that allow 
for detailed analysis of structural, aerodynamic, 
control, and even hydrodynamic phenomena (for 
offshore turbines). Among the main variables 
available are forces and moments at the blade roots 
(e.g., RootMzb1), displacements and accelerations 
in components such as the tower (e.g., TwrBsMyt, 
TwrBsAcc), and vibrations in components such as 
the rotor shaft and nacelle (e.g., LSSTipMxa, 
NcIMUTAxs). 

OpenFAST calculates these variables using 
coupled models that integrate the AeroDyn, 
ElastoDyn, and ServoDyn modules. In this study, 
considering the simulation of mass unbalance in 
the turbine blades, nacelle vibrations were selected 
as the primary variables for analysis. The selected 
variables are: 

 
� NcIMUTAxs: Translational acceleration 

along the nacelle’s X-axis. This variable is 
particularly important for identifying 
longitudinal movements resulting from the 
mass unbalance. 

� NcIMUTAys: Translational acceleration 
along the nacelle’s Y-axis, used to monitor 
lateral vibrations of the nacelle. 

� NcIMUTAzs: Translational acceleration 
along the nacelle’s Z-axis, which provides 
information about vertical vibrations and 
their possible impacts on the structure. 
 
These variables are calculated by OpenFAST 

based on the displacements and forces applied to 
the nacelle due to the unbalance and can be 
monitored alongside data from Condition 
Monitoring Systems (CMS), which are used for 
structural condition analysis and fault detection in 
wind turbines. The integration between 
OpenFAST-simulated data and CMS-collected 
data allows for cross-validation of results and 
potential applications in predictive maintenance 
practices. Analyzing these variables is essential, as 
mass unbalance can amplify nacelle vibrations, 
leading to effects such as premature wear of 
components and increased dynamic loads on the 
structure, ultimately impacting the turbine's service 
life.  

The dynamic behavior of the turbine is 
thoroughly described by a large set of time series 
comprising its power production, forces and 
moments acting on the blades, drivetrain, nacelle 
and tower, blade tips displacements, nacelle 
accelerations, etc. For illustrative purposes only, 
Figures 4 and 5 present some of these results 
related to turbine operation under normal 
conditions and with the unbalanced rotor. 

 

 
Fig. 3. Power production time series under normal 
operation conditions 
 

To demonstrate that the proposed method is 
capable of correctly simulating the behavior of the 
wind turbine when there is an unbalance in its 
blades, the data simulated via OpenFAST were 
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analyzed through a Fast Fourier Transform (FFT). 
The FFT allows Nacele vibration data to highlight 
the change in the behavior of the machine when it 
is unbalanced. The FFT is widely used for fault 
detection and condition monitoring of industrial 
equipment (Wang and Gao 2006; Randall 2011). 

The analysis was carried out in a Python 
environment using the NumPy and pandas 
libraries, which enable efficient manipulation of 
large data sets. The FFT was applied using the 
SciPy library. This ecosystem of tools ensures 
reproducibility, scalability, and straightforward 
handling of large-volume time series, making it 
possible to tailor the analysis process to data 
demands and the hypotheses being investigated. 

The main objective of using the FFT is to 
extract attributes representative to the turbine’s 
vibratory behavior. To achieve this, the 
methodological strategy adopted includes: 

 
(i) Temporal segmentation of the signal; 

(ii) Application of the Fast Fourier Transform 
(FFT); 

(iii) Calculation of statistical metrics in the 
time domain. 

 
Initially, the data was segmented into time 

windows to preserve the system's dynamic 
evolution and facilitate the identification of 
specific events. Subsequently, the FFT was 
applied, a technique that decomposes the signal 
into its spectral components, enabling the 
recognition of critical frequencies associated with 
rotation harmonics and potential mechanical faults, 
such as unbalance, misalignment, and backlash 
(Randall 2011). The spectral components derived 
from the FFT highlight frequencies of interest 
linked to turbine rotation, mechanical coupling, 
and potential external excitations (Randall 2011). 

The OpenFAST simulation provided data 
sampled at 25 Hz. To obtain characteristics that 
capture the temporal evolution of the system and 
still maintain adequate spectral resolution, the 
signal was segmented into two-minute windows, 
yielding blocks of 3,000 samples (Oppenheim and 
Schafer 2009; Bendat and Piersol 2010). Each 
segment was treated independently to extract the 
attributes. 

Fig. 4 shows the original vibration signal 
measured over a time window of 120 seconds in 
the Nacelle acceleration signal on the X axis 
(NcIMUTAx). The horizontal axis shows the time 
in seconds, while the vertical axis represents the 

instantaneous amplitude of the signal. Fig. 5 shows 
the result of the Fast Fourier Transform (FFT) 
applied to the same signal shown above in the time 
domain, now converting the oscillations as a 
function of frequency. The horizontal axis shows 
the frequencies in hertz (Hz), while the vertical axis 
indicates the magnitude (or spectral amplitude) of 
the signal at each frequency. Low-rotation 
vibration analysis makes it possible to detect 
specific anomalies, such as unbalance or variations 
in wind load, which can be reflected in additional 
peaks or increases in amplitude close to the 
fundamental frequency. 

 

 
Fig. 4. Original signal from NclMUTAxs 
 

 
Fig. 5. Result of the FFT applied to NclMUTAxs 

 
The FFT of each time window converts the 

signal from the time domain to the frequency 
domain, thereby facilitating the identification of 
harmonic peaks associated with faults and specific 
dynamic behaviors (Inman 2014). For real signals, 
the spectrum is symmetric about zero; hence, only 
the positive frequency portion is analyzed (Bendat 
and Piersol 2010). 

For the three vibration variables, the FFT was 
applied to convert the signals from the time domain 
to the frequency domain every 120 seconds. But it 
is important to note that unbalance in a rotating 
machine causes changes in a specific region of the 
FFT graph: it causes an increase in the magnitude 
recorded at the frequency corresponding to the 
machine's rotation frequency. This implies that, in 
the specific case of unbalance, it is necessary to 
observe only a specific point of each of the 
generated graphs. This provides essential 
information for interpreting phenomena related to 
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the dynamic behavior of the machine and for 
identifying early signs of mechanical faults in 
rotating machinery (Randall 2011). 

Since the machine's rotation is not fixed, 
however, an average of the magnitude values 
around the mean rotation value observed in the 120 
seconds was used in this work. More specifically, 
after obtaining the mean (u) and standard deviation 
(p) of the machine's rotation for a given time 
window of 120 seconds, the interval between u - p 
and u + p in the FFT graph was considered and the 
average of the magnitudes observed within this 
interval in the graph was calculated. This approach 
ensures that the spectral analysis remains focused 
on the band most pertinent to the unbalanced 
rotor’s dynamics. 

Fig. 6 shows the results obtained by 
extracting this value from each FFT plot obtained 
over 50 minutes for the four conditions analyzed 
(normal operation, 1%, 3%, and 5% of unbalance) 
for the NclMUTAxs variable. The results show that 
an unbalance in the machine does not promote a 
change in the way the machine vibrates along the 
nacelle’s X-axis. However, when observing Fig. 7, 
which shows the result obtained for the 
NclMUTAys variable, it is noted that the 
unbalance has a clear effect on the vibration of the 
turbine along the nacelle’s Y-axis. The results 
obtained show that the unbalance was successfully 
simulated by OpenFAST and that the synthetic 
data obtained can represent the behavior of the 
machine when it presents this fault. Furthermore, 
the results are in perfect agreement with previously 
theoretical and experimental ones published up to 
now, especially regarding the dependence between 
the magnitude of the 1x rotation FFT harmonic and 
rotor speed (Askari et al. 2024). 

4. Conclusions 
This study demonstrates the potential of 
OpenFAST simulations for generating synthetic 
monitoring data under fault conditions in wind 
turbines. By simulating rotor unbalance scenarios, 
the research provides insights into the dynamic 
behavior of turbines. Future work will focus on 
simulating a broader range of wind turbine 
failures using OpenFAST, including gear and 
generator malfunctions, under varying 
environmental conditions. Additionally, the data 
produced through these simulations will be 
compiled into a publicly accessible database, 
enabling researchers and industry professionals 

worldwide to develop and validate fault detection 
algorithms. 

 

 
Fig. 6. Results of the FFT magnitude at 1x rotation 
speed applied to NclMUTAxs 
 

 
Fig. 7. Results of the FFT magnitude at 1x rotation 
speed applied to NclMUTAys 
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