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The phased array radar composed by the T/R units in a two-dimensional surface is a typical lattice system. The 
failure criteria can be described as the failure units within a subarea exceed a threshold. The exact reliability 
evaluation method of such system is not easy to be obtained. Thus, we proposed a reliability lower bound 
evaluation method. We provide an importance-based principle to identify the weakest area  to conduct a 
selective maintenance. Some numerical examples are provided to show how to use the proposed method. 
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1. Introduction 
The lattice system, characterized by components 
arranged in a regular two-dimensional array, was 
initially introduced by Salvia & Lasher in the 
early 1990s (Salvia and Lasher 1990). However, 
this system exhibited unreliability when 
consecutive components in the same row or 
column failed. Subsequently, Yamamoto and 
Akiba proposed the connected- -out-of-  
system to expand the failure criteria of the lattice 
system (Yamamoto and Akiba 2003). In recent 
years, a more general reliability model for the 
lattice system has been developed, namely the -
within- -out-of-  system. The failure 
criteria for this model are defined as the number 
of failed components within an arbitrary window 

, out of a system with  rows and  
columns, has accumulated to at least . This can 
lead to the appearance of a “blind area,” causing 
the malfunction of the system, e.g. the phased 
array radar.  

Fig. 1 illustrates a schematic diagram of a 
 lattice system, with  of them 

having failed (Lin et al. 2019). In Fig. 1-(a), the 

failure components are sparsely distributed, so 
the system is considered as functional. In 
contrast, Fig. 1-(b) shows that the 5 failed 
components are located within a window of 

, which may cause the malfunction 
of the subarea, so the system is regarded as 
malfunctional. 
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Fig. 1.Example of a lattice system. 
 

The lattice system finds application in a 
diverse range of engineering systems, including 
phased array radar, X-ray diagnostics, design of 
electronic devices, and camera surveillance 
systems. In these applications, the overall 
performance of the system is contingent upon the 
functionality of the components within a specific 
block. Consequently, the system is deemed to 
have failed when a “blind area” emerges, 
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indicating a loss of functionality in a particular 
region. 

The selective maintenance is an imperfect 
maintenance strategy, particularly when spare 
parts are limited. The primary objective of 
selective maintenance is to identify and replace 
components which arise higher increment of the 
system reliability. For the lattice system, the 
central challenge lies in locating the window of 

 containing  failed components. In other 
words, it is essential to develop a reliability 
evaluation method for the -within- -out-of-

 system model. 
However, obtaining an exact reliability 

evaluation method for the lattice system remains 
challenging. Previous research has primarily 
focused on providing upper or lower bounds for 
system reliability. Godbole et al. utilized 
Janson's exponential inequalities to derive 
improved upper bounds on the reliability of such 
systems (Godbole et al. 1998). Makri and 
Psillakis derived both lower and upper bounds 
on the reliability for the system model by 
employing improved Bonferroni inequalities 
(Makri and Psillakis 1996). Akiba and 
Yamamoto proposed a recursive algorithm for 
computing the reliability of the model, 
demonstrating its superiority over the 
enumeration method (Akiba and Yamamoto 
2001) [5]. The limitation of these methods is that 
they are only applicable under the assumption of 
homogeneous components. Yet, this assumption 
is highly restrictive for the system model, as 
non-homogeneity is widely prevalent in real 
engineering applications due to differences in 
component types, remaining lifetimes, or 
working states. Lin et al. addressed this issue by 
employing the finite Markov chain imbedding 
approach (FMCIA) to develop a lower bound 
calculating method for the reliability of lattice 
systems with non-homogeneous components 
(Lin et al. 2019). 

The organization of this paper is as follows. 
Section 2 elucidates the process of modeling the 
lower bound of system reliability utilizing the 
methodology introduced by Lin et al. (Lin et al. 
2019). Section 3 presents an importance-based 
method for determining the failure probability of 
a specific area, which is essential for supporting 
selective maintenance decisions. Subsequently, 
Section 4 illustrates the application of the 
proposed method through several numerical 

examples, demonstrating how it can be 
employed to facilitate selective maintenance 
decisions. Finally, Section 5 summarizes the key 
findings and conclusions of the study. 

2. Method to Evaluate the Lower Bound of 
System Reliability 

To facilitate a more concise description of the -
within- -out-of-  model, we denote it 
as . This model primarily aims 
to ascertain whether the quantity of failed 
components within a window of size  out of 
the entire area of  surpasses the threshold 

. To verify whether the failure criterion is 
accomplished, a sliding window of size  is 
employed to systematically scan the entire area 
from the top-left corner to the bottom-right 
corner. We denote  as the reliability index 
of the  sliding window expanding from 
component , seen in Fig. 2.  
 

( 1)( 1)x r y sa � � � �( 1)( 1)x r ya � � �( 1)x r ya � �

( 1)( 1)x y sa � � �( 1)( 1)x ya � �( 1)x ya �

( 1)x y sa � �( 1)x ya �xya

 
Fig. 2. A sliding window expanding from . 
 

By employing FMCIA, the reliability of the 
sliding window equals to the -out-of-  model 
and can be obtained with Eq. (1), where  is 
the system state transition matrix when 
component  with working probability  is 
embedded;  is the 
initial state probability vector which represents 
all components in the system are working at 
beginning;  is to add up 
all the probability values of the reliable states 
and  is a vector transpose operator. 
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Then, we denote the reliability lower bound 
of the “ -within- -out-of- ” lattice 
system as , which can be presented 
as a series model composed by the sliding 
window with  
possible situations. Eq. (2) reveals how to obtain 
the system reliability lower bound, where we 
assume all components are working by the time 
we conduct the reliability evaluation. 
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In some situations, there may have been 
several failed components by the time we 
conduct the reliability evaluation. It will 
influence the initial state of the Markov chain so 
that we need to update the . We suppose 
there have been  failed components in the 
lattice system and they are denoted as , (

), where  represents the 
coordinate at which the failed component placed. 

For an arbitrary sliding window expanding 
from the component , we can get the number 
of failed components within this window, , 
by Eq. (3), where  represents the index 
function, i.e.  if the conditions are satisfied 
and  otherwise. The reason that we use the 
index function is that we need to see whether the 
failed component  is inside the sliding 
window. 
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Then, we can update the initial state 
probability vector to  according to following 
rules, where the symbol of  represents a zero 
vector with corresponding length. 

� If , then 
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3. Importance-based Selective Maintenance 
Policy 

When spare components are limited, it is 
infeasible to replace all components perfectly. 
Therefore, it becomes necessary to identify the 
weakest part of the lattice system. Given the 
failure criteria of the lattice system, even the 
failure of the most unreliable single component 
will not necessarily lead to system malfunction. 
Typically, to determine the weakest part of a 
system, importance analysis can be applied to 
assess the significance of each component to the 
overall system reliability. However, for the 
lattice system, we are more interested in 
identifying the weakest area that could 
potentially cause system failure, rather than just 
the weakest individual component. Thus, the 
principle to do the selective maintenance is 
shown in Fig. 3. First, we need to identify the 
weakest  area. Second, we determine the 
importance of components in the weakest area. 
Finally, we can selectively conduct the 
maintenance according to their importance. 
 

Identity the 
weakest area

Evaluate the 
importance

Conduct the 
selective 

maintenance  
Fig. 3. The principle for selective maintenance. 
 

We define a term, “causing probability”, to 
measure how likely the system is failed because 
of a specific sliding window. As  stands 
for the probability that the number of failed 
components within the sliding window , 
expanded from component , is less than , 
then the “causing probability” can be obtained 
by Eq. (4). 

/1 .xy xy
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The importance of  in the area of , 
expanding from , is calculated by equation 
(5), where the  represents the 
reliability that component  is replaced as new. 
Finally, we can select the component to be 
replaced descending by their importance value. 
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4. Numerical Examples 
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4.1. Reliability evaluation for lattice system 
with homogeneous components 
In this example, we present how the system 
reliability evaluation result will be affected if 
changing the parameters. We assume the 
components in the lattice system are the same 
with working probability . We fix the 
parameters  and  so that we can 
compare the system reliability by change one 
parameter of  at a time.  

Fig. 4 shows the system reliability lower 
bound evaluation result, given  and , 
with different value of . The 
comparison reveals that the larger  is, the less 
the system is reliable. It is because as  grows, 
the number of the possible sliding window  
increases, which leads to more multiple terms in 
the system reliability calculation equation. 
 

 
Fig. 4. Reliability comparison for . 
 
4.2. Reliability evaluation for lattice system 
with non-homogeneous components 
In this example we fix the parameters value and 
assume that the lifetime of component  in the 

 lattice system is subjected to 
an exponential distribution with different failure 
rate , seen in Table I. Thus, we have the 
working probability of component  at time  
equals to . In case some components 
are out of work, we set their failure rate , 
e.g. , 
in Table 1, which leads the working probability 
to be . 

Table 1  The failure rate  of component . 

 Column {1,2, , }j n� , },  

1 2 3 4 5 6 7 8 

R
ow

 
 

1 1 
7/
�  

30 9 10 10 40 90 

2 50 7 10 30 70 70 10 80 

3 40 6 4 30 9 
6/
� 80 7 

4 20 20 
10/
�  10 50 50 40 10 

5 20 60 90 30 10 7 6 10 

6 90 30 20 
10/
�  8 70 70 10 

7 7/
�  20 10 50 40 80 10 80 

8 50/
�  20 30 70 30 

30/
� 20 90 

9 9 9 50 60 70 70 50 
70/
�  

10 10 10 10 1 1 60 50 20 

Then we can employ Eq. (2) to compute the 
reliability of  lattice system 
reliability given component  failed. The 
comparison of the reliability index over 
operation time t , is shown in Fig. 5, which 
indicates that the system reliability decrease 
dramatically than that of a system with all 
components are working. 
 

 
Fig. 5. Reliability comparison for  
with all working components and some failed 
components. 
 
4.3. Selective maintenance for lattice system 
In this example, we first employ Eq. (4) to 
calculate the causing probability which can be 
used to determine the weakest area. The same 
parameters in Table 1 are used for this example.  

Fig. 6 shows the system reliability and the 
causing probability of all the sliding windows 
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according to operation time . It is shown that 
the area expanding from  at time  is 
weakest area which may cause the failure of the 
system.  

Thus, if the spares are limited, we further 
use Eq. (5) to calculate the importance of each 
component in the sliding window expanding 
from  to identify the components with higher 
importance to . Eventually, we can 
arrange the maintenance action to the selected 
components. 
 

 
Fig. 6. The weakest area of lattice system at different 
time . 
 

5. Conclusion 
The lattice system model finds practical 
applications in real-world scenarios, such as 
phased array radar systems. We utilize the k-
within-r×s-out-of-m×n model to characterize the 
lattice system, wherein components are arranged 
within a two-dimensional area. The system is 
deemed unreliable if any window of size r×s 
contains more than k failed components. 
Additionally, we propose a principle for 
conducting selective maintenance. A method for 
identifying the weakest area that could lead to 
system failure is presented. Several numerical 
examples are provided to illustrate the 
application of the proposed method.  
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