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Large Language Models (LLMs) have demonstrated over the past few years a strong capability in natural language
understanding, opening new opportunities in reliability analysis based on text data. In the meantime, customer
review data offer valuable insights into system failures, but the unstructured nature of natural language makes
failure information extraction challenging. In this study, we address the problem of failed component extraction
from customer reviews of tablet computers, aiming to detect failures at a component level to assess both system
and component reliability. We propose a novel approach using LLMs for this task and frame it as a multi-label
classification problem. Our method combines the design of a prompting strategy with the use of pre-trained
lightweight LLMs to automatically extract the desired information. We conduct a comparative evaluation of state-
of-the-art non-proprietary LLMs on this task. To support this work, we introduce a newly annotated dataset of 1,215
customer reviews, of which 356 mention at least one failure, annotated specifically for component failure detection.
This fine-grained failure detection framework aims at enabling more accurate reliability assessments by pinpointing
individual component failures within the broader system context. Our preliminary results show the potential of
LLMs to leverage unstructured textual data for component-level reliability analysis. Code and data available here:
https://github.com/jmpion/FaCET-ESREL2025

Keywords: Large Language Models, Failed Components, System Reliability, Customer Feedback, Natural Language
Processing, Multilabel Classification, Consumer Electronics.

1. Introduction

Reliability is defined as the probability that a
product performs its intended function without
failure, under specified conditions, for a specified
period of time in Yang (2007). To assess system
reliability, failure information is thus necessary. In
general, such failure information is available in the
form of historical records or lifetime testing data.

However, with the quick rising of advanced
Natural Language Processing (NLP) methods, the
possibility of extracting failure information from
text data offers a unique opportunity to lever-
age more failure-related data for reliability anal-
ysis. Previous studies have explored the usage of

NLP for reliability-related tasks, such as Zhang
et al. (2020) which aimed at studying maintenance
work order records to classify among several fail-
ure codes and handle multi-class classification,
under class imbalance. In Arif-Uz-Zaman et al.
(2017), maintenance work orders were used along
downtime data to classify unplanned events, in
order to provide more accurate failure dates. In
general, several such studies have been conducted
on industrial proprietary text data and using tra-
ditional frequentist approaches to derive failure
information from maintenance textual data. Other
works (Meunier-Pion et al. (2021)) explored the
possibility to classify reviews mentioning prod-
uct failures. Nevertheless, the limitation of such
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studies is that the information mined from text
is limited, and does not include crucial knowl-
edge such as time-to-failure, failure modes, failure
causes, nor the failed components of the malfunc-
tioning system. However, in the domain of con-
sumer electronics, such as tablet computers, where
systems are made of complex interactions of many
subsystems and components, understanding sys-
tem failures at the component level is essential
for correctly assessing the system reliability. This
can then guide design improvements, enhancing
customer satisfaction and limiting costs due to
maintenance and warranty claims. Thus, while
prior research has shown the feasibility of detect-
ing failures through customer feedback, a crucial
gap remains: identifying specific components as-
sociated with these failures. The basic idea can
be summarized with the following question: what
component fails when there is a failure? E.g., if a
tablet computer fails, is it due to the screen, to the
battery, to the motherboard, etc.? Addressing this
gap not only enables better reliability modeling
but also provides actionable insights for targeted
interventions.

To address this research question, this study
introduces a novel task, Failed Components
Extraction from Text (FaCET), whose goal is
the extraction of failed components from unstruc-
tured text data. The task leverages advances in
NLP to move beyond failure detection and to-
wards a deeper understanding of how failures
manifest in complex systems. A new dataset,
CuReFaCET (Customer Reviews for Failed
Component Extraction from Text), was devel-
oped to specifically support this task, by providing
1,215 customer reviews labeled across 60 compo-
nents for failure detection at the component level.
The targeted contribution of this dataset is both to
address the FaCET task, while bringing a public
text dataset for reliability engineering, in a field
which lacks large annotated public text datasets.

Given the scarcity of public labeled data in this
domain, traditional supervised learning methods
are limited in their applicability. To address this
challenge, we explored the potential of Large
Language Models (LLMs), which have demon-
strated state-of-the-art performance across various

NLP tasks (OpenAI (2024)). LLMs are particu-
larly well-suited for this task due to their ability to
perform very well in zero-shot scenarios.

2. Framework

2.1. Task description: FaCET

The FaCET task aims at extracting failed compo-
nents from text data. Formally, we can formulate
the FaCET task as follows (see Figure 1 as well).
We are given an input text t. In this text, we are in-
terested in product P . Let CP be the set of compo-
nents of product P . For instance, in our case study
we work on tablet computers, and a product can be
P = ”Tablet A”. Then, the set of components can
be CP = {”screen”, ”battery”, ”motherboard”}.
Of course, this serves as an example, and there
will be more components if we want to be ex-
haustive (see Section 2.2). To the given text t,
knowledge is attached in the form of labels in-
dicating whether a reader would infer that com-
ponents are not failed, failed, or maybe failed. In
that respect, t comes with a partition of CP with
three disjoint subsets Nt, Ft, and Mt ⊂ CP both
corresponding respectively to the Not-failed com-
ponents, Failed components, and Maybe-failed
components of P from text t. For instance, for
a review t = ”My battery stopped working.”, we
would have Nt = {”screen”, ”motherboard”},
Ft = {”battery”}, and Mt = ∅.

The goal of the task is to come with a model
enabling an accurate mapping from a text t and a
product P to the three sets Nt, Ft, and Mt. There-
fore, we call it failed components extraction, as
the main goal is to extract the failed components
set Ft, while also correctly classifying not-failed
and maybe-failed components.

Fig. 1. FaCET idea and toy example.
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Here, this formalization is limited in the sense
that we only consider a multi-label classification
task where the set of components is predefined.
We formalize the FaCET task as a closed Infor-
mation Extraction (IE) task. Another, potentially
more challenging, formalization of the FaCET
task would be the open IE formalization where CP
is not given a priori. However, the current assump-
tion of having predefined component labels is rea-
sonable in the sense that such information should
be fixed and known at least by manufacturers.

2.2. Dataset description: CuReFaCET

In CuReFaCET, there are 1,215 customer reviews,
from Amazon, all dealing with products of the
same type: tablet computers. Among those 1,215
reviews, 356 report at least one failure, while the
remaining ones mention no failure. All reviews
are labeled across 60 different component labels
with either one of those values: 0 (not-failed), 1
(failed), 2 (maybe-failed). Additionally, a sum-
mary of the failure is written by a human annota-
tor to briefly describe the failure. An uncertainty
data flag is added to customer reviews whose
annotations are uncertain. In particular, reviews
reporting dislike, or issues tending to be quality
issues rather than components losing their func-
tionality, got flagged for uncertainty. 43 reviews
have an uncertainty data flag, meaning that the
dataset comprises 313 failure reviews which are
labeled with certainty and no ambiguity. Besides,
we work under the assumption that customers
correctly identify failed components, though cus-
tomers are not experts and could misidentify failed
components, introducing noise. Sometimes, cus-
tomers give enough indication to estimate a time-
to-failure of their purchased units. In that respect,
an additional attribute for time-to-failures is pro-
vided in this dataset. However, the current study
does not use this piece of information.

The existence of ”maybe-failed” labels is justi-
fied by the ambiguity of natural language, which
in several ways can let the question ”which
component failed?” unanswered, while answering
”Yes” to the question ”did the unit fail?”. Two
instances of such a phenomenon are given in Table
1. For the first one, a customer describes that

a hinge does not function correctly, but they do
not specify which one it is. Thus, in the dataset,
”Hinge” is labeled as failed, but we incorporate
”Left hinge” and ”Right hinge” for more granular-
ity, both of which are maybe failed. Other reviews
actually specify which hinge is failed, making this
level of detail relevant. For the second example,
the customer says that there are charging prob-
lems, but no additional information is given as to
which component is failed. It could be due to the
”Battery”, to the ”Charger”, or even the ”Charging
port”. For this reason, some subsystems of the
product are created in the labels, like ”Charging
system” to account for core functions of the prod-
uct, which depend on several parts.

Table 1. Examples of maybe failed components.

Excerpt Failed Maybe

”Just to wake it the

hinge must be right or
else I need to tilt the
whole device.”

A hinge Left hinge?
Right hinge?

”Power charging

problems twice now.”
Charging
system

Battery?
Charger?
Charging port?

3. Methodology

In this work, the idea is to have a language model
which, as shown in Figure 1 extracts failed com-
ponents based on a given review. A major chal-
lenge however, is to enforce the LLM to structure
its output so that it matches a desired format and
remains consistent from one inference to another.
The proposed overall framework is presented in
Figure 2. There are seven configuration variables
which were identified in this framework and that
are listed below.

1. Language Model - The language model
used for generating outputs is the main ingredient
that can be changed for extracting failed compo-
nents. (E.g., Gemma 2 9B, Meta-LlaMA 3 8B,
etc.)

2. Prompting strategy - The prompt passed
to the model to ask it to generate an answer can
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Fig. 2. Flowchart of the overall framework.

vary (E.g., do we ask for bullet points answers, or
for a JSON format? Do we include maybe-failed
components, or not?, etc.)

3. Performance metric - The metric used to
compare predicted label vectors to reference label
vectors. (E.g., Hamming loss? Exact match ratio?
False positives, false negatives? How are maybe-
failed labels considered?)

4. Log parsing - The method used to convert
LLM outputs (logs) to label vectors that can be

compared to reference label vectors (E.g., JSON
extraction? Use of several assistants? What pattern
for pattern matching?)

5. Data subset - The subset of the data on
which performance is computed. (E.g., all data?
Only data with an uncertainty data flag? Do we in-
clude examples with maybe-failed components?)

6. Component subset - The subset of compo-
nents on which the performance is computed. (Do
we include groups like ”Charging system” and
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”Audio system”, or not? This can be varied both
in the prompting strategy and in the performance
evaluation.)

7. Error handling - How errors are handled.
(E.g., how are empty responses from an LLM
treated? How are pattern matching errors han-
dled?)

In this study, the default configuration is the fol-
lowing. By default, the language model used is the
open-source Meta-Llama-3-8B AI@Meta (2024).
The prompting strategy consists of asking for a
JSON with failed and maybe-failed components,
along with details. The template is provided in
Figure 3. The performance metric is the average
of the macro-averaged F1-scores for each compo-
nent, as will be detailed in Section 4. The log pars-
ing approach consists of pattern matching on ’{}’
to find JSON formats in natural language LLM an-
swers. The data subset is the whole CuReFaCET
dataset. The component subset is the whole set of
components. Finally, the error handling strategy
consists of matching empty responses and errors
in general to not-failed label vectors.

To clearly visualize what an output of an LLM
can be, given the default prompt template, we
provide an example in Figure 4.

4. Results

4.1. Performance metrics

The task at hand is a multi-label multi-
classification task. For each instance, several la-
bels need be assigned, and for each label, more
than two classes exist. To assess models on such
a task, several methods exist, and traditional ap-
proaches include using the Hamming loss, which
is defined as in Eq. (1), or the exact match ratio,
defined as in Eq. (2).

Let p denote the number of components, or
”parts” the system under study has. Here, p corre-

Fig. 3. The default prompt template.

Fig. 4. Example of an LLM answer.

sponds to the number of labels each instance has,
since each label represents the state of a compo-
nent of the system. Besides, p is fixed (p = 60 in
CuReFaCET). For each instance indexed by i, we
denote by yi its true label vector, with yi ∈ Cp,
where C = {0, 1, 2} is the set of classes for
each label (0 for not-failed, 1 for failed, and 2 for
maybe-failed). Let ŷi be the predicted label vector
for instance i.

Now, for each component indexed by 1 ≤ j ≤
p, let yji (resp. ŷji ) be the label of component j
according to yi (resp. ŷi). Let us denote by y and
ŷ the tensors containing all yi instances and all ŷi
instances. Let n be the number of instances over
which we compute the Hamming loss. Then the
Hamming loss is calculated as given in Eq. (1).

HL(y, ŷ) =
1

np

n∑

i=1

p∑

j=1

1yj
i �=ŷj

i
(1)

The metric that we want to maximize is in fact
the Hamming score, which is HS = 1 − HL. It
corresponds to a sort of naive accuracy where we
compute how many labels are correctly predicted
across all instances and all components. However,
one limitation of this metric is that it can be very
high, especially in highly imbalanced scenarios.

Another metric used in this work is the exact
match ratio, where we compute the share of label
vectors that are exactly predicted. This metric is
by definition lesser than the Hamming score, and
is less affected by data imbalance, though for
datasets containing a large proportion of instances
having the same label vectors, data imbalance
remains an issue when using the exact match ratio.

EM(y, ŷ) =
1

n

n∑

i=1

1yi=ŷi (2)
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However, the dataset of this study is highly im-
balanced. There are significantly more not-failed
labels across the dataset, since units usually have
just a few failed components, when they fail. Be-
sides, there are significantly more label vectors set
to 0Cp , since there are more customer reviews with
no failure than with failure.

Therefore, while the Hamming score and the
exact match ratio will be given as general in-
dicators of the performance, we define the key
performance indicator in this work as the aver-
age macro-averaged F1-score over all components
(see Eq. 3). From now on, we will refer to this
metric as F1-score, for conciseness.

F1(y, ŷ) =
1

p

p∑

j=1

F1macro(y
j , ŷj) (3)

yj ∈ Cn (resp. ŷj) denotes the j-th true (resp.
estimated) labels of all n instances.

4.2. Language model benchmark
4.2.1. Model selection

For all experiments, the default configuration is
as stated at the end of Section 3. Starting from
this configuration, we first conducted a language
model benchmark, by evaluating different LLMs
on the task. The models that were used in the
benchmark were the open-source and below-50B-
parameters models of the top 50 of the LM sys
leaderboard Chiang et al. (2024), at time 2:00
PM on August 27, 2024. This leaderboard is con-
stantly updated, thus new language models may
fit the above features in the future and become
relevant to try. The selected models were Gemma
2 27B Instruct, Gemma 2 9B Instruct (Google
(2024)), Llama 3 8B Instruct, Llama 3.1 8B In-
struct (AI@Meta (2024)), and C4AI Command-R
(35B).

4.2.2. Benchmark results

The language model benchmark results are pre-
sented in Table 2. We include a dummy baseline,
for which predicted labels are all set to 0.

The results show that the dummy baseline has
the better Hamming score and Exact Match ratio,
which is explained by the high data imbalances, as

Table 2. Benchmark results.

Model HS EM F1

Llama-3.1-8B-It 93.0% 57.5% 38.5%
C4AI Command-R 91.3% 29.8% 42.2%
Llama-3-8B-It 94.2% 61.8% 43.1%
Gemma-2-9B-It 95.6% 63.5% 47.6%

Gemma-2-27B-It 95.4% 61.6% 50.9%

Dummy baseline 0 95.7% 71.1% 32.6%

there are 859/1,215 reviews labeled with vectors
equal to 0Cp , and a total of 639 failed labels, 2,512
maybe-failed labels, and 69,749 not-failed labels,
in the whole dataset. This high data imbalance
also explains why the Hamming Score and Ex-
act Match ratio suggest high performance, while
the F1-score indicates otherwise, as anticipated
in Section 4.1. On the other hand, all bench-
marked language models outperform the dummy
baseline on the F1-score, which accounts for
their capability to detect failed components.The
best model is Gemma-2-27B, which outperforms
the dummy baseline by +18%, and the worst-
performing model by +12%. Thus, the selected
language model can significantly affect the perfor-
mance. Besides, model size is not necessarily cor-
related with performance as the C4AI Command-
R model stands behind Llama 3 8B and Gemma
2 9B, while having four times their sizes. Fi-
nally, when automatically parsing LLMs logs for
extracting JSON formats, Gemma 2 and C4AI
Command-R models each produced at most five
format errors over the 1,215 customer reviews of
the dataset, while the Llama 3 models produced
more than one hundred JSON format errors. When
such format errors were detected, the predicted
labels were considered as 0s.

4.2.3. Error analysis

To improve the performance over the initial
benchmark, we conducted an error analysis on the
predictions from the benchmark. To analyze the
errors, for each model, the five components with
the worst F1-score were identified and their con-
fusion matrices, normalized row-wise, were dis-
played. Then, the most common error types were
detected as the non-diagonal cells of such confu-
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sion matrices, with the highest values. Analyzing
the confusion matrices, it appears that the most
frequent type of errors occurs when maybe-failed
components are predicted as not-failed compo-
nents. The components with the most errors are
specific parts of tablet computers, for which very
few true failures are annotated. For instance, as
CuReFaCET comprises 2-in-1 tablets equipped
with a keyboard, some components are specific
keys, which sometimes failed. However, when the
keyboard failed, customers would rarely specify
which key failed. Thus, models face difficulties in
correctly deciding between 0 labels and 2 labels.

4.3. Handling maybe-failed components
4.3.1. Prompt engineering

To mitigate the issue of having too many maybe-
failed components predicted as not-failed, the
prompt template used for FaCET was changed.
We incorporated additional guidelines to im-
prove the detection of maybe-failed components,
while making explicit the labeling rules relative
to maybe-failed annotations. The following lines
were added at the end of the default prompt
template: ”\n In addition, here are guidelines to
follow:\n- If the review specifies that at least one
component failed, all components that are not
mentioned as failed should be considered as not
failed.\n- However, if no component is specified
as failed, but we know based on the review that
the unit failed, then all components should be
considered as maybe failed.”

4.3.2. New results

The results obtained with the new prompt template
are provided in Table 3. Except for Gemma 2
models, the language models obtain worse scores
for all metrics, compared to the initial benchmark.
This is explained by a significant increase in er-
rors where a not-failed component is predicted as
maybe-failed, while the models still struggle to
correctly distinguish labels 0 and 2. The Gemma 2
models however significantly increased their per-
formance, reaching 60.2% F1-score, +27% above
the baseline and the other model families. Also,
Gemma 2 9B outperforms its larger version in this
scenario, while matching the dummy baseline on

Table 3. Benchmark results.

Model HS EM F1

Llama-3.1-8B-It 77.0% 54.4% 35.6%
C4AI Command-R 78.5% 7.8% 41.1%
Llama-3-8B-It 70.8% 46.0% 38.0%
Gemma-2-9B-It 95.7% 69.7% 60.2%

Gemma-2-27B-It 92.3% 60.6% 55.4%

Dummy baseline 0 95.7% 71.1% 32.6%

the Hamming score and exact match ratio, and
pushing further the F1-score.

5. Discussion and Conclusion

This study introduced the FaCET task and a novel
text dataset for failure information extraction. The
inherent linguistic ambiguity was addressed by
accounting for maybe-failed components, when
one knows that a system failed without knowing
exactly which component is at fault. The results
showed the possibility to use LLMs to extract
structured failure information from natural lan-
guage data. In particular, JSON formats were used
to structure knowledge and a special ”Details”
attribute (see Figure 3) was used to tackle LLMs
verbosity and trick them into writing long ex-
planations in a specific slot. In the end, the best
models reached a F1-score >60%, significantly
improving over the baseline and weaker models.
These results highlight the potential for extracting
failure data from non-expert text. A targeted out-
put of FaCET is to obtain visual representations
of systems showing which parts are failed (see
Figure 5 for instance). The extracted information
can be used in real-world reliability assessments
by connecting them with time-to-failure informa-
tion obtained either from the text corpus under
study, metadata, or related databases containing
temporal information.

The main challenges included the high data im-
balance of the dataset, which led to the careful se-
lection of a performance metric, and the resource-
intensive use of LLMs, necessitating multi-GPU
setups with 1-2 hours per dataset pass, per model.
Future directions include benchmarking state-of-
the-art proprietary models, continuing the error
analysis to refine the p rompt template which has
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Fig. 5. Example of system health state visualization.

not been over-engineered yet, annotating degraded
state labels, and extracting more failure-related
information, like time-to-failure.
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