
Proceedings of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Edited by Eirik Bjorheim Abrahamsen, Terje Aven, Frederic Bouder, Roger Flage, Marja Ylönen

©2025 ESREL SRA-E 2025 Organizers. Published by Research Publishing, Singapore.

doi: 10.3850/978-981-94-3281-3_ESREL-SRA-E2025-P1355-cd

RAMS is not enough!

The design of a software integration risk analysis matrix (SIRAM) for assessing the

impact of software integration on physical system performance

Arno Kok

Asset Management and Maintenance Engineering, University of Twente, The Netherlands, a.t.kok@utwente.nl
Integration and Train Performance, NS Treinmodernisering Engineering, The Netherlands

Alberto Martinetti

Asset Management and Maintenance Engineering, University of Twente, The Netherlands,
a.martinetti@utwente.nl

Ferry Verrijzer

Integration and Train Performance, NS Treinmodernisering Engineering, The Netherlands, ferry.verrijzer@ns.nl

Jan Braaksma

Asset Management and Maintenance Engineering, University of Twente, The Netherlands,
a.j.j.braaksma@utwente.nl

Physical assets are increasingly digitally enhanced using software and associated information

technologies. These added functionalities make them more complex to engineer and maintain as they

depend on additional software and information technology components. However, the available RAMS

analysis methodologies do not explicitly include software application and integration. We propose a

software integration risk matrix (SIRAM) as an extension of the current RAMS methodology, to assess

the effect of software on overall system performance. This extension can aid decision-making by

indicating the expected software's integration impact on system performance and maintenance needs and

is developed using design science research methodology (DSRM). A case study within the Dutch

railways served as the basis for the design and testing of the proposed matrix. The testing shows that the

proposed software integration risk matrix can add value by managing that critical software impacts will

be part of the system integration process.

Keywords: RAMS, Software, Information Technology, System Integration, IT/OT convergence, Railways.

1. Introduction

The software increasingly influences almost all

technical systems and modern physical assets.

Reliability, availability, maintainability and

safety (RAMS) analyses are performed to ensure,

amongst others, the reliability and maintenance

requirements of new or modified systems. These

RAMS analysis methodologies are perceived to

be effective for traditional electromechanical

systems. However, traditional RAMS methods do

not specifically pay attention to the unique aspects

of software integration. Our previous study shows

that the RAMS methodology has difficulties

representing the reliability and maintenance effort

required for modern-day systems (Kok et al.,

2023).

Until the late 20th century, assets consisted

mainly of electromechanical components; today,

they are increasingly equipped with IT software

and hardware. These electromechanical systems

often fail independently, and defects are

predictable, while software failures are usually

random events (April & Abran, 2008; Lyu, 2007).

Furthermore, unlike physical systems, software is

1224

1225Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

unaffected by environmental factors and does not

deteriorate over time (Naylor & Joyner, 2014).

However, the software can have ageing symptoms

due to an accumulation of memory errors, for

example. This results in increased failure rates

and/or performance degradation. Unlike physical

systems, restarting the application often solves

software ageing problems (Araujo et al., 2021).

Also, it is generally not possible to define a failure

rate for software (Singpurwalla, 1995).

Nonetheless, software defects can cause poor

system performance and downtime (Eloff &

Bella, 2018). The effect of software failures on

performance is generally between 20-50% (Gray,

1985; Schroeder & Gibson, 2006), but sometimes

up to 2/3 of failures can be related to software

(Grottke et al., 2010).

Some examples of these software defects are

two rolling stock and a metro failure in the

Netherlands that made it to the (regional) news.

These failures that impacted passengers resulted

from software and hardware interactions, leading

to hidden and unclear failure modes (Bremmer,

2024; NOS, 2022; NU.nl, 2019).

From an internal investigation within the

Dutch Railways (Peters, 2024) based on

maintenance service request data, the impact of

software-related failures on corrective

maintenance activities is between 8-13%,

depending on the type of train and the position

within the lifecycle of this train.

These figures might even be higher since

about 20% of the service requests have no

registered cause, and the mechanic did not find an

error. These failures that "come and go" are likely

related to software failures, as hardware failures

often have a mechanical cause that does not

spontaneously disappear.

A software defect can refer to both a fault

(cause) and a failure (effect) (Lyu, 1996). A

software failure results from a software fault

originating from a software code defect (Musa,

2004). In the performance of assets, there is an

interplay between hardware, software and

humans, and it is often difficult to find the exact

cause of a failure. Therefore, we will use

"software-related failures" to refer to failures

arising from hardware, software and human

interaction within assets.

1.1. Challenges when integrating software
components within physical systems

Assets that contain software face a unique issue

due to the relationship between hardware and

software, where even a small error can cause

significant failures (Oveisi & Ravanmehr, 2017).

These failures often occur at the interfaces

between systems (Carlson, 2012), and the

interfaces are hidden within the code, making

fault-finding even more challenging (González-

Arechavala et al., 2010).

Consequently, software fault prevention

during software development is essential. Despite

this, software fault prevention techniques have

not kept up with the increased complexity of

software (Goble, 2010), and all faults and failures

discovered during the software development

process affect software reliability (Naylor &

Joyner, 2014). During operation, other aspects

influence the reliability of the software

components, such as operators, internal or

external hardware, or any combination of these

(Goble, 2010). Therefore, software verification

and validation are crucial (Björklund et al., 2021).

Moreover, to keep digitized assets secure,

software updates are necessary to fix known

software-related issues such as vulnerabilities and

bugs. Within the literature, there are different

opinions on how to classify these software-related

issues. In Table 1, an overview of several

software-related issue classifications is given.

This overview shows that software-related

problems do not only originate from so-called

bugs in the source code but can have multiple

other sources, such as configuration or network-

related issues.

Table 1. Different software-related issue

classifications adapted from (Catolino et al., 2019;

Herzig et al., 2013; IEC, 2012; Gladney, 2007).

Author List of classifications

Catolino et al. Configuration issue

Network issue

Database-related issue

GUI-related issue

Performance issue

Permission/depreciation issue

Security issue

Program anomaly issue

Test code-related issue

Herzig et al. Bugs

Feature requests

Documentation issue

1226 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Refactoring request

Improvement request

Other

Gladney Media and hardware failures

Software failures

Communication channel errors

Network service failures

Component obsolescence

Operator errors

Natural disasters

External attacks

Internal attacks

CENELEC

62628:2012

Specification fault

Design fault

Programming fault

Compiler-inserted fault

Faults introduced during

maintenance

1.2.Current Approaches and Gaps

Until now, most software reliability research has

focused on enhancing software resilience by

preventing or removing software faults (i.e.,

software process improvement) (Goble, 2010).

Quality control during software development is

essential since software defects are all quality

aspects (Jelinski & Moranda, 1972). The level of

confidence in a software development process is

often called assurance. This software quality

assurance focuses on testing practices,

requirements validation, used technologies,

software change management controls, and

organization and culture (Al MohamadSaleh &

Alzahrani, 2023; IEC, 2012). However, justifying

the correlation between process quality and the

failure rate of the software product is nearly

impossible (Habli et al., 2010).

There are many software reliability prediction

techniques available. However, there are

challenges when these techniques are applied in

practice (Oveisi & Ravanmehr, 2017). The

difficulty with these methods is that they require

in-depth knowledge of the software and often

need the actual software code. System integrators

usually do not have either (Rathi et al., 2022). No

model is available to combine the effects of

software reliability and that of the hardware. This

results in too little attention to the influence of

software on operational performance and

expected maintenance efforts during the design

and integration of systems within assets.

Therefore, our study is focused on designing an

extension of the existing RAMS methodology to

evaluate the impact of software on reliability and

maintenance when integrating systems within an

asset.

2. Methodology

This research presents an extension of the RAMS

methodology developed using design science

research methodology (DSRM) (Peffers et al.,

2007). In Fig. 1, this process is depicted.

Fig. 1 Overview of the design process used within this

study, adapted from (Peffers et al., 2007).

2.1.Identify problem and motivation

The primary issue is that software has an

increasing impact on the reliability of the systems

within an asset and, thus, the reliability and

maintenance performance of the asset itself.

However, the current RAMS method does not

include software (Kok et al., 2023).

2.2. Design objectives

The purpose of the proposed software integration

risk analysis matrix is for engineers to assess the

effect of the integration of software on the

performance of their system, and it is based on the

main observations from our previous studies (Kok

et al., 2023). We concluded, amongst others, that

the current RAMS methodology underestimates

software's impact on system reliability, overlooks

the effects of IT network performance, lacks

multidisciplinary expertise, and requires an

iterative approach for optimizing system

performance. These challenges have led to the

following design objectives:

 Objective 1: Identifying when software

integration within an asset is critical and

thus requires extra engineering

attention.

 Objective 2: Adding attention to the

specific effects of software on the

reliability prediction.

1. Identify
problem &
Motivate

2.
objectives of a

solution

3. Design &
development

4.
Demonstration5. Evaluation

1227Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

 Objective 3: An easy-to-use model: a

hardware engineer should be able to

easily assess the identify and assess the

impact of software on reliability using

the extension of the method.

2.3.Co-designing the extension of the method

The extension of the method is developed in

active involvement with industry experts from the

NS Engineering department in Haarlem, The

Netherlands. The principal researcher laid out the

problem in multiple sessions and brainstormed

possible solutions with the participants.

2.4.Demonstration of the method

The results of these sessions were presented to 18

experts to get an estimate of the usability of the

proposed method. During a semi-structured

interview, using the questions from Appendix A,

these experts were asked how useful the method

and accompanying matrix are.

2.5.Evaluation of the method

The validity of the matrix is assessed by analyzing

the interviews with the railway industry experts

using two steps. In the first step the outcomes of

these interviews will be scanned and mapped to

the papers design objective, to see what is

emerging. In the second step two interviews are

selected and used as a first validation.

3. Results

A RAMS calculation must be prepared for the

electromechanical part of the system under

consideration according to the existing

methodology that is based on EN50126 (NEN,

2017). From this RAMS calculation a failure rate

is determined, usually in different failure classes

(FC1, FC2, FC3) and expressed in failures per

million coach kilometers (FMCK).

Then for identifying and assessing the impact

of software on system performance a matrix with

accompanying instructions is proposed, objective

1 and 2. After following several steps a factor can

be read from this SIRAM matrix. This factor can

be used to adjust the earlier calculated failure rate

of the electromechanical part of the.

The matrix which should be easy-to-use,

objective 3, is inspired by several studies on

managing the impacts of software on system

performance (Chittister & Haimes, 1996; Ye &

Kelly, 2004; Smith, 2004; Roca, 2019). Ideally,

one would derive the factors in the matrix from

actual generalized failure rates for software. In

practice, this is not possible, as substantiated in

the introduction to this article.

The proposed matrix consists of two axes:

how software intensive is the design (e.g. how

much impact does the software have on the

system it is controlling), and what is the

complexity level of the system (e.g. a system with

standard software and hardware with limited

interfaces or is it specifically created for the

situation at hand with many hard- and software

interfaces).

Table 2. The proposed SIRAM matrix will determine

the level of attention that should be given to software

development.

The matrix's goal is to indicate for practitioners

how important it is to consider the impact of the

software on the system reliability and the required

maintenance effort. The method consists of three

steps to determine the influence of the software

that is being considered.

First, the impact of software within a system

is determined using Table 3. Second, the

complexity level of the software within a system

is determined in Table 4. Third, using the results

of these tables, the software's influence on the

system's performance under consideration can be

read from the matrix, see Table 4. The given

numbers are a multiplying factor to adjust the

calculated reliability of a system for the influence

of software. The colors correspond with the

additional effort needed to ensure the robustness

of the software.

Table 3. Matrix to determine the impact of the

software on the system.

Impact on system performanceDetermine
multiplication
factor fs

Very

High

HighMediumLow

1,301,201,101,05Low
Complexity

level
1,401,301,201,10Med

1,501,401,301,20High

System complexity level
ExampleDescriptionLevel
Software for intelligent light

control

Standardized software, limited

in size

Low

Intelligent climate system with

heat pump and CO2 level control

Standardized software, but big

in size. Or custom software, but

limited in size

Medium

TCMS updateCustom software and big in

size

High

1228 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Table 4. Matrix to determine the complexity of the

software within a system.

Demonstration
In preparation for the interview, the experts were

asked to read the method and complete the matrix

with one example system in mind. This system

was either the European Train Control System

(ETCS) or a Closed-Circuit Television (CCTV)

system. Since not all participants have experience

with both systems, we have divided the interviews

into CCTV or ETCS, depending on their

experience. In the instructions that were shared

with the experts before the interview, the matrix

was made gray, and the factors were removed to

prevent bias. During the interview, the experts are

asked to plot the assigned system in the matrix

and then discuss their reasoning before we share

the matrix with colors and factors

4. Discussion

In this section, the initial observations are mapped

to the paper's design objectives and outcomes of

two interviews on CCTV will be elaborated upon,

and some. After scanning the interview results the

preliminary insights from the interviews are

mapped to the, in paragraph 2.2 outlined, design

objectives of this paper in Table 6.

The first objective of the paper is to identify

when software development during system

integration needs extra attention. The matrix does

not accurately represent the quality of the

software development process, it is suggested to

classify the systems within the matrix instead of

ranking them.

The paper's second objective is to add the

effects of software to the reliability prediction.

The methodology effectively raises awareness

about software quality and its impact on asset

reliability, but it may not always be accurate.

Software is often hidden from most people. By

using a factor, the impact of software becomes

measurable. Making software visible helps in the

conversations with industry partners.

The third objective of the paper is to design a

method that is easy to use. The first results show

that the method is indeed easy to use; however,

one of the respondents indicated that the matrix

might be too simple.

Then the high-level results of the two selected

interviews are presented in Table 5. As can be

seen from this table, both experts classify the

CCTV system in the same impact and complexity

categories. Also, both experts indicate that colors

can be used to determine the effort needed for the

software being evaluated.

Table 5. Impact and complexity classification by two

experts on CCTV.

Category

Respondent

#13

Respondent

#16

Impact Very High Very High

Remark Many

dependencies

around

software

across

components.

Tricky because

various software

parts have

different impacts.

Complexity

Average

Average

Is the

method

helpful?

Yes, however,

using only

colors instead

of both colors

and numbers is

preferred.

Only when using

colors not when

using numbers.

Remarks

The complexity

is low with

standard systems

and higher on

custom systems.

Last, some general observations based on the

interviews. There seems to be a difference

between the people who have read the method's

instructions and those who had not and who had

read them were more effective in its use. Which

suggests it is needed to train or facilitate the

practitioners in the use of the matrix.

When the method is used with only numbers,

the importance of a system on the asset's overall

performance is fixed within the allocation of the

reliability budget for the mechanical part of the

systems. If only color categories are used, to

express the criticality, this allocation is not

present; therefore, additionally, the system impact

on the overall train reliability needs to be

Impact on system performance
ExampleDescriptionLevel
System continues to function, but

status report no longer works

Software failure barely

affects the system

Low

The brightness controller fails,

leaving the lamps at maximum

brightness without adjusting for

conditions.

Software failure interferes

with system operation, but

system remains available

Medium

Software failure severely

limits system functionality

High

NVR fails, resulting in no more

camera images being saved

Due to software failure, the

system no longer functions

Very high

1229Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

considered. The next step is to extend the

validation of the method using all the interview

data and to improve the method based on the

feedback from the interviews. Then, the improved

matrix should be validated within other industrial

domains.

Table 6. Feedback on the proposed method mapped to the objectives of this paper.

Objectives Feedback

1: Identifying when software integration within an

asset is critical and thus requires extra engineering

attention.

The numbers in the proposed matrix are difficult. Instead

of ranking a system, classifying the systems generically

beforehand might work better.

The matrix does not necessarily visualize good or bad

software development.

2: Adding the effects of software to the reliability

prediction

The methodology is useful. This may trigger more

attention to software quality and reliability.

It is useful as it raises awareness of the software's

importance at the start of the project.

3: Easy-to-use, a hardware engineer should be able

to assess the impact of software on reliability using

the extension of the method.

The matrix makes the discussion on the impact

accessible.

The risk matrix might however be too simplistic. If you

work with colors, people will perhaps only act if they are

really in red, for instance.

5. Conclusion

Physical assets are becoming more digitally

complex, relying heavily on software and IT

components. However, software reliability is

often excluded from RAMS analysis and cannot

easily be quantified regarding expected failure

rates. This study proposes extending the RAMS

methodology with a decision-making matrix to

assess software's impact on overall asset

reliability. This matrix helps engineers to

determine the importance of software in the

reliability of the system at hand and to focus their

RAMS analysis efforts effectively. The next step

is to improve the method based on the feedback,

and to validate this improved matrix in other

industrial domains.

Acknowledgements
The first author would like to thank the experts

from the Nederlandse Spoorwegen for

participating in the interviews and his fellow

PhDs from the AMME group for their support

during the creation of this paper. Holland High

Tech and Nederlandse Spoorwegen (NS)

supported this work with a PPP grant for research

and development in the top sector HTSM.

Appendix A. Structured interview questions
Interviewee

Interviewer

Date

Location

Was the matrix documentation reviewed?

RAMLCC experience?

Level of railway-related software experience?

Is the document understandable?

What example system is taken in mind?

Complexity:

Is the complexity of your system determinable?

Are the categories logical/applicable?

Missing categories?

Impact:

Determinable?

Logical /applicable?

Missing categories?

Matrix:

Which position emerged?

What would be real value?

Does this match the number in the completed matrix?

Discuss deviation

Response to the pre-filled matrix:

Does the methodology make sense?

Do you prefer numbers or colors?

Other comments/suggestions?

6. References

1230 Proc. of the 35th European Safety and Reliability & the 33rd Society for Risk Analysis Europe Conference

Al MohamadSaleh, A., & Alzahrani, S. (2023).

Development of a Maturity Model for Software

Quality Assurance Practices. Systems, 11(9),

Article 9.

https://doi.org/10.3390/systems11090464

April, A., & Abran, A. (2008). Software maintenance
management: Evaluation and continuous
improvement. Wiley Interscience.

https://ieeexplore.ieee.org/book/6129685

Araujo, J., Melo, C., Oliveira, F., Pereira, P., & Matos,

R. (2021). A Software Maintenance Methodology:

An Approach Applied to Software Aging. 2021
IEEE International Systems Conference (SysCon),
1–8.

https://doi.org/10.1109/SysCon48628.2021.94470

82

Björklund, L., Glaser, M., Skofteland, G., &

Lundteigen, M. A. (2021). A Comparison of

Different Approaches for Verification and

Validation of Software in Safety-Critical Systems.

Proceedings of the 31st European Safety and
Reliability Conference (ESREL 2021), 3451–3458.

https://doi.org/10.3850/978-981-18-2016-8_262-

cd

Bremmer, D. (2024, February 18). NS-paradepaardje

‘de wesp’ blijkt hoofdpijntrein: 99 treinen besteld,

slechts acht daarvan rijden. AD.Nl/Algemeen
Dagblad. https://www.ad.nl/binnenland/ns-

paradepaardje-de-wesp-blijkt-hoofdpijntrein-99-

treinen-besteld-slechts-acht-daarvan-

rijden~a730a56a/

Carlson, C. (2012). Effective FMEAs: Achieving safe,
reliable, and economical products and processes
using failure mode and effects analysis. Wiley.

https://onlinelibrary.wiley.com/doi/book/10.1002/

9781118312575

Catolino, G., Palomba, F., Zaidman, A., & Ferrucci, F.

(2019). Not all bugs are the same: Understanding,

characterizing, and classifying bug types. Journal
of Systems and Software, 152, 165–181.

https://doi.org/10.1016/j.jss.2019.03.002

Chittister, C. G., & Haimes, Y. Y. (1996). Systems

Integratilon via Software Risk Management. IEEE
Transactions on Systems, Man, and Cybernetics -
Part A: Systems and Humans, 26(5), 521–532.

https://doi-

org.ezproxy2.utwente.nl/10.1109/3468.531900

Eloff, J., & Bella, M. B. (2018). Software Failures: An

Overview. In J. Eloff & M. Bihina Bella (Eds.),

Software Failure Investigation: A Near-Miss
Analysis Approach (pp. 7–24). Springer

International Publishing.

https://doi.org/10.1007/978-3-319-61334-5_2

Gladney, H. M. (2007). Preserving digital
information. Springer Berlin, Heidelberg.

https://link.springer.com/book/10.1007/978-3-

540-37887-7

Goble, W. (2010). Control Systems Safety Evaluation
and Reliability, Third Edition (3rd ed).

International Society of Automation.

González-Arechavala, Y., Rodríguez-Mondéjar, J. A.,

& Latorre-Lario, G. (2010). The opportunity to

improve software RAMS. In B. Ning (Ed.), WIT
Transactions on State of the Art in Science and
Engineering (1st ed., Vol. 1, pp. 91–102). WIT

Press. https://doi.org/10.2495/978-1-84564-494-

9/11

Gray, J. (1985). Why Do Computers Stop and What
Can Be Done About It? (85.7). Tandem

Computers.

https://pages.cs.wisc.edu/~remzi/Classes/739/Fall

2018/Papers/gray85-easy.pdf

Grottke, M., Nikora, A. P., & Trivedi, K. S. (2010).

An empirical investigation of fault types in space

mission system software. 2010 IEEE/IFIP
International Conference on Dependable Systems
& Networks (DSN), 447–456.

https://doi.org/10.1109/DSN.2010.5544284

Habli, I., Hawkins, R., & Kelly, T. (2010). Software

safety: Relating software assurance and software

integrity. International Journal of Critical
Computer-Based Systems, 1(4), 364.

https://doi.org/10.1504/IJCCBS.2010.036605

Herzig, K., Just, S., & Zeller, A. (2013). It’s not a bug,

it’s a feature: How misclassification impacts bug

prediction. 2013 35th International Conference on
Software Engineering (ICSE), 392–401.

https://doi.org/10.1109/ICSE.2013.6606585

IEC. (2012). IEC 62628:2012—Guidance on software
aspects of dependability (62628; Version 2012).

Nederlands Normalisatie-instituut.

https://connect.nen.nl/Standard/Detail/176136?co

mpId=16755&collectionId=0

Jelinski, Z., & Moranda, P. (1972). Software

Reliability Research. In Statistical Computer
Performance Evaluation (pp. 465–484). Elsevier.

https://doi.org/10.1016/B978-0-12-266950-

7.50028-1

Kok, A., Martinetti, A., & Braaksma, J. (2023).

RAMS never dies! Applying the approach to

IT/OT converged systems. Proceedings of the
33rd European Safety and Reliability Conference
(ESREL 2023), 3181–3187.

https://doi.org/10.3850/978-981-18-8071-1_P286-

cd

Lyu, M. R. (Ed.). (1996). Handbook of software
reliability engineering. IEEE Computer Society

https://www.cse.cuhk.edu.hk/~lyu/book/reliability

/

Lyu, M. R. (2007). Software Reliability Engineering:

A Roadmap. Future of Software Engineering
(FOSE ’07), 153–170.

https://doi.org/10.1109/FOSE.2007.24

1231Proc. of the35thEuropeanSafetyandReliability& the33rdSociety forRiskAnalysis EuropeConference

Musa, J. D. (2004). Software reliability engineering:
More reliable software, faster and cheaper (2nd

ed). AuthorHouse.

https://dl.acm.org/doi/10.5555/1036241

Naylor, W., & Joyner, B. (2014). A discourse on

software safety and software reliability. 2014
Reliability and Maintainability Symposium, 1–5.

https://doi.org/10.1109/RAMS.2014.6798493

NEN. (2017). EN 50126—1—Railway Applications—
The Specification and Demonstration of
Reliability, Availability, Maintainability and
Safety (RAMS)—Part 1: Generic RAMS Process

(50126–1). NEN.

NOS. (2022, January 25). “Structurele problemen
door nieuw metrosysteem in Amsterdam.”

https://nos.nl/l/2413149

NU.nl, D. (2019, February 20). “Nieuwe sprinter van
NS kampt met storingen en valt vaak uit.” NU.

https://www.nu.nl/binnenland/5752206/nieuwe-

sprinter-van-ns-kampt-met-storingen-en-valt-

vaak-uit.html

Oveisi, S., & Ravanmehr, R. (2017). Analysis of

software safety and reliability methods in cyber

physical systems. International Journal of Critical
Infrastructures, 13(1), 1.

https://doi.org/10.1504/IJCIS.2017.083632

Peffers, K., Tuunanen, T., Rothenberger, M. A., &

Chatterjee, S. (2007). A Design Science Research

Methodology for Information Systems Research.

Journal of Management Information Systems,

24(3), 45–77. https://doi.org/10.2753/MIS0742-

1222240302

Peters, L. (2024, September 2). Software gerelateerde
storingen Nieuw Materieel—Maximo Analyse. NS

Treinmodernisering. 850110750 (internal

document)

Rathi, G., Tiwari, U. K., & Singh, N. (2022). Software

Reliability: Elements, Approaches and

Challenges. 2022 International Conference on
Advances in Computing, Communication and
Materials (ICACCM), 1–5.

https://doi.org/10.1109/ICACCM56405.2022.100

09422

Roca, J. L. (2019). Software Reliability: A Must.
https://www.researchgate.net/publication/3372897

47_Software_Reliability_A_Must

Schroeder, B., & Gibson, G. A. (2006). A large-scale

study of failures in high-performance computing

systems. International Conference on Dependable
Systems and Networks (DSN’06), 249–258.

https://doi.org/10.1109/DSN.2006.5

Singpurwalla, N. D. (1995). The failure rate of

software: Does it exist? IEEE Transactions on
Reliability, 44(3), 463–469.

https://doi.org/10.1109/24.406582

Smith, J. D. (2004). ImpACT: An Alternative to

Technology Readiness Levels for Commercial-

Off-The-Shelf (COTS) Software. In R. Kazman &

D. Port (Eds.), COTS-Based Software Systems

(Vol. 2959, pp. 127–136). Springer Berlin

Heidelberg. https://doi.org/10.1007/978-3-540-

24645-9_24

Ye, F., & Kelly, T. (2004, August 2). Criticality

Analysis for COTS Software Components.

Proceedings of 22nd International System Safety
Conference (ISSC’04). 22nd International System

Safety Conference, Providence, Rhode Island,

USA.

https://citeseerx.ist.psu.edu/document?repid=rep1

&type=pdf&doi=85fbaff51b0b3bc4fd8060c9d77c

551de017bfd9

